SEARCH

SEARCH BY CITATION

Literature cited

  • Araki, H., B. Cooper, and M. S. Blouin. 2007. Genetic effects of captive breeding cause a rapid cumulative fitness decline in the wild. Science 318:100.
  • Bardonnet, A., and J.-L. Baglinière. 2000. Freshwater habitat of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 57:497506.
  • Bergersen, E. P., and D. E. Anderson. 1997. The distribution and spread of Myxobolus cerebralis in the United States. Fisheries 22:67.
  • Burnham, K. P., and D. R. Anderson. 1998. Model Selection and Multimodal Inference. A Practical Information-Theoretic Approach. Springer, New York.
  • Consuegra, S., H. Megens, K. Leon, R. J. M. Stet, and W. C. Jordan. 2005. Patterns of variability at the major histocompatibility class II alpha locus in Atlantic salmon contrast with those at the class I locus. Immunogenetics 57:1624.
  • Costello, M. J. 2009. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proceedings of the Royal Society B: Biological Sciences 276:33853394.
  • Coughlan, J., P. McGinnity, B. O’Farrell, E. Dillane, O. Diserud, E. de Eyto, K. Farrell et al. 2006. Temporal variation in an immune response gene (MHC I) in anadromous Salmo trutta in an Irish river before and during aquaculture activities. ICES Journal of Marine Science 63:12481255.
  • Crozier, L. G., A. P. Hendry, P. W. Lawson, T. P. Quinn, N. J. Mantua, J. Battin, R. G. Shaw et al. 2008. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evolutionary Applications 1:252270.
  • Dionne, M., K. M. Miller, J. J. Dodson, F. Caron, and L. Bernatchez. 2007. Clinal variation in MHC diversity with temperature: evidence for the role of host-pathogen interaction on local adaptation in Atlantic salmon. Evolution 61:21542164.
  • Dionne, M., K. M. Miller, J. J. Dodson, and L. Bernatchez. 2009. MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Philosophical Transactions of the Royal Society of London B Biological Sciences 364:15551565.
  • Donaghy, M. J., and E. Verspoor. 2000. A new design of instream incubator for planting out and monitoring Atlantic salmon eggs. North American Journal of Fisheries Management 20:521527.
  • Eizaguirre, C., and T. L. Lenz. 2010. Major histocompatability complex polymorphism: dynamics and consequences of parasite-mediated local adaptation in fishes. Journal of Fish Biology 77:20232047.
  • Estoup, A., C. R. Largiader, E. Perrot, and D. Chourrout. 1996. Rapid one-tube extraction for reliable PCR detection of fish polymorphic markers and transgenes. Molecular Marine Biology and Biotechnology 5:295298.
  • de Eyto, E., P. McGinnity, S. Consuegra, J. Coughlan, J. Tufto, K. Farrell, H. Megens et al. 2007. Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild. Proceedings of the Royal Society B: Biological Sciences 274:861869.
  • Ford, J. S., and R. A. Myers. 2008. A global assessment of salmon aquaculture impacts on wild salmonids. PLoS Biology 6:e33.
  • Fraser, B. A., and B. D. Neff. 2009. MHC class IIB additive and nonadditive effects on fitness measures in the guppy Poecilia reticulata. Journal of Fish Biology 75:22992312.
  • Garrigan, D., and P. W. Hedrick. 2003. Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:17071722.
  • Glover, K. A., U. Grimholt, H. G. Bakke, F. Nilsen, A. Storset, and Ã. Skaala. 2007. Major histocompatibility complex (MHC) variation and susceptibility to the sea louse Lepeophtheirus salmonis in Atlantic salmon Salmo salar. Diseases of Aquatic Organisms 76:5765.
  • Grimholt, U., F. Drabløs, S. M. Jørgensen, B. Høyheim, and R. J. M. Stet. 2002. The major histocompatability class I locus in Atlantic salmon (Salmo salar L.): polymorphism, linkage analysis and protein modelling. Immunogenetics 54:570581.
  • Grimholt, U., S. Larsen, R. Nordmo, P. Midtlyng, S. Kjoeglum, A. Storset, S. Saebø et al. 2003. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55:210219.
  • Hari, R. E., D. M. Livingstone, R. Siber, P. Burkhardt-Holm, and H. Güttinger. 2006. Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Global Change Biology 12:1026.
  • Harvell, C. D., C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld, and M. D. Samuel. 2002. Climate warming and disease risks for terrestrial and marine biota. Science 296:21582162.
  • Håstein, T., and T. Lindstad. 1991. Diseases in wild and cultured salmon: possible interactions. Aquaculture 98:277288.
  • Hedrick, P. W. 2002. Pathogen resistance and genetic variation at MHC loci. Evolution 56:19021908.
  • Hedrick, P. W., K. M. Parker, E. L. Miller, and P. S. Miller. 1999. Major histocompatibility complex variation in the endangered Przewalski’s horse. Genetics 152:17011710.
  • Hedrick, P. W., R. N. Lee, and D. Garrigan. 2002. Major histocompatibility complex variation in red wolves: evidence for common ancestry with coyotes and balancing selection. Molecular Ecology 11:19051913.
  • ICES. 2009. Report of the Working Group on North Atlantic Salmon (WGNAS). International Council for the Exploration of the Sea CM 2009/ACOM:06.
  • ICES. 2010. Report of the Working Group on North Atlantic Salmon (WGNAS). International Council for the Exploration of the Sea CM 2010/ACOM:09.
  • Johnsen, B. O., and A. J. Jensen. 1994. The spread of furunculosis in salmonids in Norwegian rivers. Journal of Fish Biology 45:4755.
  • Jonsson, B., and N. Jonsson. 2009. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. Journal of Fish Biology 75:23812447.
  • Kekäläinen, J., J. A. Vallunen, C. R. Primmer, J. Rättyä, and J. Taskinen. 2009. Signals of major histocompatibility complex overdominance in a wild salmonid population. Proceedings of the Royal Society B: Biological Sciences 276:31333140.
  • King, T. L., S. Eackles, and B. H. Letcher. 2005. Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery analyses. Molecular Ecology Notes 5:130.
  • Klein, J. 1986. The Natural History of the Major Histocompatibility Complex. Wiley & Sons, New York.
  • Krkošek, M., J. S. Ford, A. Morton, S. Lele, R. A. Myers, and M. A. Lewis. 2007. Declining wild salmon populations in relation to parasites from farm salmon. Science 318:17721775.
  • Langefors, Å., J. Lohm, M. Grahn, Ø. Andersen, and T. von Schantz. 2001. Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proceedings of the Royal Society B: Biological Sciences 268:479485.
  • Lohm, J., M. Grahn, Å. Langefors, Ø. Andersen, A. Storset, and T. von Schantz. 2002. Experimental evidence for major histocompatibility complex-allele-specific resistance to a bacterial infection. Proceedings of the Royal Society B: Biological Sciences 269:20292033.
  • McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. Chapman & Hall, London.
  • McGinnity, P., P. Prodöhl, A. Ferguson, R. Hynes, N. Ò Maoileidigh, N. Baker, D. Cotter et al. 2003. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society of London. Series B: Biological Sciences 270:24432450.
  • McGinnity, P., E. Jennings, E. de Eyto, N. Allott, P. Samuelsson, G. Rogan, K. Whelan et al. 2009. Impact of naturally spawning captive-bred Atlantic salmon on wild populations: depressed recruitment and increased risk of climate-mediated extinction. Proceedings of the Royal Society B: Biological Sciences 276:36013610.
  • McVicar, A. H. 1997. Disease and parasite implications of the coexistence of wild and cultured Atlantic salmon populations. ICES Journal of Marine Science 54:10931103.
  • Miller, M. P., and E. R. Vincent. 2008. Rapid natural selection for resistance to an introduced parasite of rainbow trout. Evolutionary Applications 1:336341.
  • Okamura, B., H. Hartikainen, H. Schmidt-Posthaus, and T. Wahli. 2011. Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshwater Biology 56:735753.
  • Oliver, M. K., S. Telfer, and S. B. Piertney. 2009. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proceedings of the Royal Society B: Biological Sciences 276:11191128.
  • Olsen, J. B., E. J. Kretschmer, S. L. Wilson, and J. E. Seeb. 2000. Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Molecular Ecology 9:21852187.
  • O’Reilly, P. T., L. C. Hamilton, S. K. McConnell, and J. M. Wright. 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Canadian Journal of Fisheries and Aquatic Sciences 53:22922298.
  • Paterson, S., K. Wilson, and J. M. Pemberton. 1998. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proceedings of the National Academy of Science of the United States of America 95:37143719.
  • Paterson, S., S. B. Piertney, D. Knox, J. Gilbey, and E. Verspoor. 2004. Characterization and PCR multiplexing of novel highly variable tetranucleotide Atlantic salmon (Salmo salar L.) microsatellites. Molecular Ecology Notes 4:160162.
  • Pedersen, A. B., and S. A. Babayan. 2011. Wild immunology. Molecular Ecology 20:872880.
  • Penn, D. J., K. Damjanovich, and W. K. Potts. 2002. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proceedings of the National Academy of Science of the United States of America 99:1126011264.
  • R Development Core Team. 2004. R: A Language and Environment for Statistical Computing. R Development Core Team, Vienna.
  • Schad, J., J. U. Ganzhorn, and S. Sommer. 2005. MHC constitution and parasite burden in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439450.
  • Slettan, A., I. Olsaker, and Ø. Lie. 1995. Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Animal Genetics 26:281282.
  • Stet, R. J. M., B. de Vries, K. Mudde, T. Hermsen, J. van Heerwaarden, B. P. Shum, and U. Grimholt. 2002. Unique haployptes of co-segregating major histocompatibility class II A and class II B alleles in Atlantic salmon (Salmo salar) give rise to diverse class II genotypes. Immunogenetics 54:320331.
  • Tollenaere, C., J. Bryja, M. Galan, P. Cadet, J. Deter, Y. Chaval, K. Berthier et al. 2008. Multiple parasites mediate balancing selection at two MHC class II genes in the fossorial water vole: insights from multivariate analyses and population genetics. Journal of Evolutionary Biology 21:13071320.
  • Tonteri, A., A. Vasemagi, J. Lumme, and C. R. Primmer. 2010. Beyond MHC: signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci. Molecular Ecology 19:12731282.
  • Turner, S. M., M. Faisal, and J. A. DeWoody. 2007. Zygosity at the major histocompatibility class IIB locus predicts susceptibility to Renibacterium salmoninarum in Atlantic salmon (Salmo salar L.). Animal Genetics 38:517519.
  • Wegner, K. M. 2008. Historical and contemporary selection of teleost MHC genes: did we leave the past behind? Journal of Fish Biology 73:21102132.
  • Wynne, J. W., M. T. Cook, B. E. Nowak, and N. G. Elliot. 2007. Major histocompatibility polymorphism associated with resistance towards amoebic gill diesease in Atlantic salmon (Salmo salar L.). Fish and Shellfish Immunology 22:707717.
  • Zippin, C. 1958. The removal method of population estimation. Journal of Wildlife Management 22:8290.