SEARCH

SEARCH BY CITATION

Literature cited

  • Allendorf, F. W.1986. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology5:181190.
  • Alò, D., and T. F. Turner2005. Effects of habitat fragmentation on effective population size in the endangered Rio Grande silvery minnow. Conservation Biology19:11381148.
  • Antao, T., A. Perez-Figueroa, and G. Luikart2010. Early detection of population declines: high power of genetic monitoring using effective population size estimators. Evolutionary Applications4:144154.
  • Bessert, M. L., and G. Ortí2003. Microsatellite loci for paternity analysis in the fathead minnow, Pimephales promelas (Teleostei: Cyprinidae). Molecular Ecology Notes3:532534.
  • Bestgen, K. R., and D. L. Propst1996. Redescription, geographic variation and taxonomic status of Rio Grande silvery minnow, Hybognathus amarus (Girard, 1856). Copeia1996:4155.
  • Chevolot, M., J. R. Ellis, A. D. Rijnsdorp, W. T. Stam, and J. L. Olsen2008. Temporal changes in allele frequencies but stable genetic diversity over the past 40 years in the Irish Sea population of thornback ray, Raja clavata. Heredity101:120126.
  • Cook, J. A., K. R. Bestgen, D. L. Propst, and T. L. Yates1992. Allozymic divergence and systematics of the Rio Grande silvery minnow, Hybognathus amarus (Teleostei: Cyprinidae). Copeia1998:644.
  • Crow, J. F., and M. Kimura1970. An Introduction to Population Genetics Theory. Harper and Row, New York.
  • Dimsoski, P., G. Toth, and M. Bagley2000. Microsatellite characterization in central stoneroller Campostoma anomalum (Pisces: Cyprinidae). Molecular Ecology9:21872189.
  • Dudley, R. K., and S. P. Platania2007a. Rio Grande Silvery Minnow Population Monitoring Results from October 2005 to October 2006. Final Report submitted to U.S. Bureau of Reclamation, Albuquerque, NM, USA. http://www.middleriogrande.com/LinkClick.aspx?fileticket=xpW68rQc99Y%3dandtabid=273andmid=680 (accessed on 1 July 2011).
  • Dudley, R. K., and S. P. Platania2007b. Flow regulation and fragmentation imperil pelagic-spawning riverine fishes. Ecological Applications17:20742086.
  • Dudley, R. K., G. C. White, S. P. Platania, and D. A. Helfrich2011. Rio Grande silvery minnow population estimation program results from October (2006–2008). Final Report submitted to the U.S, Bureau of Reclamation Albuquerque Office. 152 pp.
  • Eldridge, W. H., and E. Killebrew2008. Genetic diversity over multiple generations of supplementation: an example from Chinook salmon using microsatellite and demographic data. Conservation Genetics9:1328.
  • Excoffier, L., G. Laval, and S. Schneider2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online1:4750.
  • Fisher, R. A.1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford, UK.
  • Franklin, I. R., and R. Frankham1998. How large must populations be to retain evolutionary potential. Animal Conservation1:6973.
  • Fraser, D. J., M. M. Hansen, S. Ostergaard, N. Tessier, M. Legault, and L. Bernatchez2007. Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems. Molecular Ecology16:38663889.
  • Goudet, J.1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. Journal of Heredity86:485486.
  • Gow, J. L., P. Tamkee, J. Heggenes, G. A. Wilson, and E. B. Taylor2011. Little impact of hatchery supplementation that uses native broodstock on the genetic structure and diversity of steelhead trout revealed by large-scale spatio-temporal microsatellite survey. Evolutionary Applications4:763782.
  • Guo, S. W., and E. A. Thompson1992. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics48:361372.
  • Hedgecock, D.1994. Does variance in reproductive success limit effective population sizes of marine organisms? In A. R. Beaumont, ed. Genetics and Evolution of Aquatic Organisms, pp. 122134. Chapman & Hall, London, UK.
  • Hedrick, P. W.1999. Perspective: highly variable genetic loci and their interpretation in evolution and conservation. Evolution53:313318.
  • Hill, W.1981. Estimation of effective population size from data on linkage disequilibrium. Genetical Research38:209216.
  • Hillis, D., C. Mable, and B. Mable1996. Molecular Systematics. Sinauer Associates, Sunderland, MA, USA.
  • Jorde, P. E., and N. Ryman1995. Temporal allele frequency change and estimation of effective in populations with overlapping generations. Genetics139:10771090.
  • Jorde, P. E., and N. Ryman1996. Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics143:13691381.
  • Jorde, P. E., and N. Ryman2007. Unbiased estimator for genetic drift and effective population size. Genetics177:927935.
  • Karaiskou, N., M. Lappa, S. George Oikonomidis, C. Psaltopoulou, T. J. Abatzopoulos, C. Triantaphyllidis, and A. Triantafyllidis2011. Genetic monitoring and effects of stocking practices on small Cyprinus carpio populations. Conservation Genetics12:12991311.
  • Laurie-Ahlberg, C. C., and B. S. Weir1979. Allozyme variation and linkage disequilibrium in some laboratory populations of Drosophila melanogaster. Genetics92:12951314.
  • Lavery, S., and C. P. Keenan1995. Genetic analysis of crustacean stock structure and stock size. In A. J. Courtney, and M. G. Cosgrove, eds. Proceedings of the Workshop on Spawning Stock-Recruitment Relationships (SRRs) in Australian Crustacean Fisheries, pp. 116126. Queensland Department of Primary Industries, Brisbane.
  • Long, R. A., P. MacKay, and J. Ray2008. Noninvasive Survey Methods for Carnivores. Island Press, Washington, DC, 385 pp.
  • Luikart, G., N. Ryman, D. A. Tallmon, M. Schwartz, and F. W. Allendorf2010. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conservation Genetics11:355373.
  • Lynch, M., and R. Lande1998. The critical effective size for a genetically secure population. Animal Conservation1:7072.
  • Moyer, G. R., M. J. Osborne, and T. F. Turner2005. Genetic and ecological dynamics of species replacement in an arid-land river. Molecular Ecology14:12631273.
  • Nei, M.1987. Molecular Evolutionary Genetics. Columbia University Press, New York, USA.
  • Nei, M., and F. Tajima1981. Genetic drift and estimation of effective population size. Genetics98:625640.
  • Osborne, M. J., M. A. Benavides, and T. F. Turner2005. Genetic heterogeneity among pelagic egg samples and variance in reproductive success in an endangered freshwater fish, Hybognathus amarus. Environmental Biology of Fishes73:463472.
  • Osborne, M. J., T. A. Diver, and T. F. Turner2010a. Genetic status of the Arkansas River shiner (Notropis girardi) and evaluation of hybridization among cyprinid fish in the Pecos River, New Mexico. Final Report submitted to the New Mexico Department of Game and Fish, Santa Fe, New Mexico. 20 pp.
  • Osborne, M. J., S. R. Davenport, C. R. Hoagstrom, and T. F. Turner2010b. Genetic effective size, Ne, tracks density in a small freshwater cyprinid, Pecos bluntnose shiner (Notropis simus pecosensis). Molecular Ecology19:28322844.
  • Osborne, M. J., and T. F. Turner2009. Baseline genetic survey of the threatened Pecos bluntnose shiner (Notropis simus pecosensis). Final Report to New Mexico Department of Game and Fish, Santa Fe, NM. 31 pp.
  • Ovenden, J. R., D. Peel, R. Street, A. J. Courtney, S. D. Hoyle, S. L. Peel, and H. Podlich2007. The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus). Molecular Ecology16:127138.
  • Palstra, F. P., and D. E. Ruzzante2008. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?Molecular Ecology17:34283447.
  • Palstra, F. P., M. F. O’Connell, and D. E. Ruzzante2009. Age structure, changing demography and effective population size in Atlantic salmon (Salmo salar). Genetics182:12331249.
  • Peel, D., J. R. Ovenden, and S. L. Peel2004. NeEstimator: Software for Estimating Effective Population Size. Queensland Government, Department of Primary Industries and Fisheries, Brisbane.
  • Petit, R. J., A. El Mousadik, and O. Pon1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology12:844855.
  • Pflieger, W. L.1980. Hybognathus nuchalis Agassiz, Central silvery minnow. In D. S. Lee, C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister, and J. R. Stauffer Jr., eds. Atlas of North American Freshwater Fishes, p. 177. North Carolina State Museum of Natural History, Raleigh, NC.
  • Platania, S. P., and C. S. Altenbach1998. Reproductive strategies and egg types of seven Rio Grande basin cyprinids. Copeia1998:559569.
  • Platania, S. P., and R. K. Dudley2006. Spatial Spawning Periodicity of Rio Grande Silvery Minnow During 2006. Submitted to the US Bureau of Reclamation, Albuquerque, NM. October 2006.
  • Pollak, E.1983. A new method for estimating the effective population size from allele frequency changes. Genetics104:531548.
  • R Development Core Team2006. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org .
  • Raymond, M., and F. Rousset1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity86:248249.
  • Rice, W. R.1989. Analyzing tables of statistical tests. Evolution43:223225.
  • Ryman, N., and L. Laikre1991. Effects of supportive breeding on the genetically effective population size. Conservation Biology5:325329.
  • Ryman, N., F. Utter, and K. Hindar1995. Introgression, supportive breeding, and genetic conservation. In J. D. Ballou, M Gilpin, and T. J. Foose, eds. Population Management for Survival and Recovery, pp. 341365. Columbia University Press, New York, NY.
  • Saarinen, E. V., J. D. Austin, and J. C. Daniels2010. Genetic estimation of contemporary effective population size in an endangered butterfly indicate a possible role for genetic compensation. Evolutionary Applications3:2839.
  • Schwartz, M. K., G. Luikart, and R. S. Waples2007. Genetic monitoring as a promising tool for conservation and management. Trends in Ecology and Evolution22:1116.
  • Small, M. P., K. Currens, M. Johnson, A. E. Fryeand, and J. F. von Bargen2009. Impacts of supplementation: genetic diversity in supplemented and unsupplemented populations of summer chum salmon (Oncorhynchus keta) in Puget Sound (Washington, USA). Canadian Journal of Fisheries and Aquatic Science66:12161229.
  • Sokal, R. R., and F. J. Rohlf1997. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn. W. H. Freeman and Co, New York, 850 pp.
  • Sunnucks, P., A. C. C. Wilson, L. B. Beheregaray, K. Zenger, J. French, and A. C. Taylor2000. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Molecular Ecology9:16991710.
  • Tessier, N., L. Bernatchez, and J. M. Wright1997. Population structure and impact of supportive breeding inferred from mitochondrial and microsatellite DNA analyses in land-locked Atlantic salmon Salmo salar L. Molecular Ecology6:735750.
  • Turner, T. F., L. A. Salter, and J. R. Gold2001. Temporal-method estimates of Ne from highly polymorphic loci. Conservation Genetics2:297308.
  • Turner, T. F., T. E. Dowling, R. E. Broughton, and J. R. Gold2004. Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily Leusicinae). Conservation Genetics5:273281.
  • Turner, T. F., M. J. Osborne, G. R. Moyer, M. A. Benavides, and D. Alò2006. Life history and environmental variation interact to determine effective population to census size ratio. Proceedings of the Royal Society London B273:30653073.
  • U.S. Department of the Interior1994. Endangered and threatened wildlife and plants: final rule to list the Rio Grande silvery minnow as an endangered species. Federal Registar59:3698836995.
  • U.S. Fish and Wildlife Service2009. Rio Grande Silvery Minnow Genetics Management and Propagation Plan. http://www.middleriogrande.com/LinkClick.aspx?fileticket=nAj3x8zOMgA%3dandtabid=455andmid=1041 (accessed on 1 July 2011).
  • U.S. Fish and Wildlife Service2010. Rio Grande Silvery Minnow (Hybognathus amarus) Recovery Plan First Revision. U.S. Fish and Wildlife Service, Albuquerque, NM, viii + 210 pp.
  • Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, and P. Shipley2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes4:535538.
  • Wang, J. L.2001. A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genetical Research78:243257.
  • Waples, R. S.1989. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics121:379391.
  • Waples, R.S. 2002. Definition and estimation of effective population size in the conservation of endangered species. In S. R. Beissinger, and D. R. McCullough, eds. Population Viability Analysis, pp. 147168. University of Chicago Press, Chicago, IL.
  • Waples, R. S.2005. Genetic estimates of contemporary effective population size: to what time periods do the estimates apply?Molecular Ecology14:33353352.
  • Waples, R. S., and C. Do1994. Genetic risk associated with supplementation of Pacific salmonids – captive broodstock programmes. Canadian Journal Fisheries and Aquatic Sciences51:310329.
  • Waples, R. S., and C. Do2008. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources8:753756.
  • Waples, R. S., and C. Do2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications3:244262.
  • Waples, R. S., and M. Yokota2007. Temporal estimates of effective population size in species with overlapping generations. Genetics175:219233.
  • Weir, B. S., and C. C. Cockerham1984. Estimating F-statistics for the analysis of population structure. Evolution38:13581370.
  • Wright, S.1931. Evolution in Mendelian populations. Genetics16:97159.