SEARCH

SEARCH BY CITATION

Literature cited

  • Angilletta, M. J. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, Oxford.
  • Barrett, R. D. H. , and D. Schluter . 2007. Adaptation from standing genetic variation. Trends in Ecology & Evolution 23:3844.
  • Bean, D. W. , P. Dalin , and T. L. Dudley . 2012. Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evolutionary Applications. [In Press].
  • Bernays, E. A. , T. Hartmann , and R. F. Chapman . 2004. Gustatory responsiveness to pyrrolizidine alkaloids in the Senecio specialist, Tyria jacobaeae (Lepidoptera, Arctiidae). Physiological Entomology 29:6772.
  • Boag, P. T. , and P. R. Grant . 1978. Heritability of external morphology in Darwin's finches. Nature 274:793794.
  • Bucher, G. E. , and P. Harris . 1961. Food-plant spectrum and elimination of disease of cinnabar moth larvae, Hypocrita jacobaeae (L.) (Lepidoptera: Arctiidae). Canadian Entomologist 93:931936.
  • Burdon, J. J. , R. H. Groves , and J. M. Cullen . 1981. The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. Journal of Applied Ecology 18:957966.
  • Cameron, E. 1935. A study of the natural control of ragwort (Senecio jacobaea L.). Journal of Ecology 23:265322.
  • Carroll, S. P. , and C. W. Fox . 2008. Conservation Biology: Evolution in Action. Oxford University Press, New York, NY, USA.
  • Coombs, E. M. , H. Radtke , D. L. Isaacson , and S. P. Snyder . 1996. Economic and regional benefits from the biological control of tansy ragwort, Senecio jacobaea, in Oregon. In Proceedings of the IX International Symposium on Biological Control of Weeds, pp. 489494. University of Cape Town, South Africa.
  • Cox, G. W. 2004. Alien Species and Evolution. Island Press, Washington, DC.
  • Dempster, J. P. 1982. The ecology of the cinnabar moth, Tyria jacobaeae L. (Lepidoptera: Arctiidae). Advances in Ecological Research 12:136.
  • Diehl, J. , and P. B. McEvoy . 1990. Impact of the cinnabar moth (Tyria jacobaeae) on Senecio triangularis, a non-target native plant in Oregon. In Proceedings of the VII International Symposium on Biological Control of Weeds, pp. 119126. Ministero dell'Agricoltura e delle Foreste, Rome, Italy/CSIRO, Melbourne, Australia, Melbourne.
  • Falconer, D. S. , and T. F. C. Mackay . 1996. Introduction to Quantitative Genetics. Longman, Essex, England.
  • Force, D. C. 1967. Genetics in the colonization of natural enemies for biological control. Annals of the Entomological Society of America 60:722729.
  • Fowler, S. V. , P. Syrett , and R. L. Hill . 2000. Success and safety in the biological control of environmental weeds in New Zealand. Austral Ecology 25:553562.
  • Frick, K. E. , and J. K. Holloway 1964. Establishment of the cinnabar moth, Tyria jacobaeae, on tansy ragwort in the western United States. Journal of Economic Entomology 57:152154.
  • Fuller, J. 2002. Assessing the safety of weed biological control: a case study of the cinnabar moth Tyria jacobaeae. MS Thesis. Oregon State University, Corvallis, Oregon.
  • Futuyma, D. J. 2000. Potential evolution of host range in herbivorous insects. In R. van Driesche , T. Heard , A. McClay , and R. Reardon , eds. Proceedings: Host Specificity of Exotic Arthropod Biological Control Agents: The Biological Basis for Improvement in Safety, pp. 4253. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, West Virginia, USA.
  • Hairston, N. G. , S. P. Ellner , M. A. Geber , T. Yoshida , and J. A. Fox . 2005. Rapid evolution and the convergence of ecological and evolutionary time. Ecology Letters 8:11141127.
  • Harman, H. M. , J. J. Dymock , and P. Syrett . 1990. Temperature and development of Cinnabar Moth, Tyria jacobaeae (Lepidoptera: Arctiidae), in New Zealand. In Proceedings of the VII International Symposium on Biological Control of Weeds, pp. 119126. Ministero dell'Agricoltura e delle Foreste, Rome/CSIRO, Melbourne.
  • Harris, P. , and P. McEvoy . 1995. The predictability of insect host plant utilization from feeding tests and suggested improvements for screening weed biocontrol agents. In Proceedings of the Eighth International Symposium on Biological Control of Weeds, pp. 125131. DSIR/CSIRO, Melbourne, Australia.
  • Harrison, S. , C. D. Thomas , and T. M. Lewinsohn . 1995. Testing a metapopulation model of coexistence in the insect community on ragwort (Senecio jacobaea). American Naturalist 145:546562.
  • Hartley, H. O. , and J. N. K. Rao . 1967. Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika 54:93108.
  • Hawkes, R. B . 1968. The cinnabar moth, Tyria jacobaeae, for control of tansy ragwort. Journal of Economic Entomology 61:499501.
  • Henry, L. M. , N. May , S. Acheampong , D. R. Gillespie , and B. D. Roitberg . 2010. Host-adapted parasitoids in biological control: does source matter? Ecological Applications 20:242250.
  • Hoffmann, A. A. , and C. M. Sgrò . 2011. Climate change and evolutionary adaptation. Nature 470:479485.
  • Holt, R. D. , and M. E. Hochberg . 1997. When is biological control evolutionarily stable (or is it)? Ecology 78:16731683.
  • Hopper, K. R. 2001. Research needs concerning non-target impacts of biological control introductions. In E. Wajnberg , J. K. Scott , and P. C. Quimby , eds. Evaluating Indirect Ecological Effects of Biological Control, pp. 3956. CAB International, New York, NY, USA.
  • Hopper, K. R. , R. T. Roush , and W. Powell . 1993. Management of genetics of biological control introductions. Annual Review of Entomology 38:2751.
  • Hufbauer, R. A. 2002. Evidence for nonadaptive evolution in parasitoid virulence following a biological control introduction. Ecological Applications 12:6678.
  • Hufbauer, R. A. , and G. K. Roderick . 2005. Microevolution in biological control: mechanisms, patterns, and processes. Biological Control: Theory and Applications in Pest Management 35:227239.
  • Jervis, M. A. 1997. Parasitoids as limiting and selective factors: can biological control be evolutionarily stable? Trend in Ecology and Evolution 12:378380.
  • Karacetin, E. 2007. Biotic barriers to colonizing new hosts by the cinnabar moth Tyria jacobaea (L.) (Lepidoptera: Arctiidae). PhD. Oregon State University, Corvallis, Oregon.
  • Kawecki, T. J. , and D. Ebert . 2004. Conceptual issues in local adaptation. Ecology Letters 7:12251241.
  • van Klinken, R. D. , and O. R. Edwards . 2002. Is host-specificity of weed biological control agents likely to evolve rapidly following establishment? Ecology Letters 5:590596.
  • Kraaijeveld, A. R. 2004. Experimental evolution in host-parasitoid interactions. In L. E. Ehler , R. Sforza , and T. Mateille , eds. Genetics, Evolution and Biological Control, pp. 163181. CAB International, Wallingford, UK.
  • Lande, R. 1977. Statistical tests for natural selection on quantitative characters. Evolution 31:442444.
  • van Lenteren, J. C. , J. Bale , F. Bigler , H. M. T. Hokkanen , and A. J. M. Loomans . 2006. Assessing risks of releasing exotic biological control agents of arthropod pests. Annual Review of Entomology 51:609634.
  • Louda, S. M. , R. W. Pemberton , M. T. Johnson , and P. A. Follett . 2003. Nontarget effects – The Achilles' Heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annual Review of Entomology 48:365396.
  • McEvoy, P. B. , C. Cox , and E. Coombs . 1991. Successful biological control of ragwort, Senecio jacobaea, by introduced insects in Oregon. Ecological Applications 1:430442.
  • McEvoy, P. B. , E. Karacetin , and D. J. Bruck . 2008. Can a pathogen provide insurance against host shifts by a biological control organism? In Proceedings of the XII International Symposium on Biological Control of Weeds, pp. 3742. CAB International Wallingford, UK, La Grande Motte, France.
  • Messenger, P. S. , and R. van den Bosch . 1971. The adaptability of introduced biological control agents. In C. B. Huffaker , ed. Biological Control, pp. 6892. Plenum, New York, New York, USA.
  • Miller, D. 1929. Control of ragwort: experimental work with cinnabar moth. New Zealand Journal of Science and Technology 11:112119.
  • Morris, R. , and W. Fulton . 1970. Heritability of diapause intensity in Hyphantria cunea and correlated fitness responses. Canadian Entomologist 102:927938.
  • Mousseau, T. A. , and D. A. Roff . 1987. Natural selection and the heritability of fitness components. Heredity 59:181.
  • Murtaugh, P. A. , S. C. Sarah Emerson , P. B. McEvoy , and K. M. Higgs . 2012. The statistical analysis of phenology data. Environmental Entomology 41:355361.
  • Myers, J. H. 1978. Biological control introductions as grandiose field experiments: adaptations of the cinnabar moth to new surroundings. In Proceedings of the Fourth International Symposium on Biological Control of Weeds, pp. 181188. The Center for Environmental Programs, Institute of Food and Agricultural Sciences, Gainesville, Florida, USA.
  • Myers, J. H. 1979. The effects of food quantity and quality on emergence time in the cinnabar moth. Canadian Journal of Zoology 57:11501156.
  • Myers, J. H. 2001. The importance of evolution and adaptation to predicting the outcome of biological control. In C. Fox , D. Fairbairn , and D. Roff , eds. Evolutionary Ecology: Concepts and Case Studies, pp. 361370. Oxford University Press, New York, NY, USA.
  • Parker, H. L. 1960. Starvation tests with larvae of the cinnabar moth. Journal of Economic Entomology 53:472473.
  • Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637669.
  • Paynter, Q. , S. Fowler , A. Gourlay , M. Haines , H. Harman , S. Hona , P. Peterson et al. 2004. Safety in New Zealand weed biocontrol: a nationwide survey for impacts on nontarget plants. New Zealand Plant Protection 57:102.
  • Pemberton, R. W. 2000. Predictable risk to native plants in weed biological control. Oecologia 125:489494.
  • Perkins, T. A . 2012 Evolutionarily labile species interactions and spatial spread of invasive species. The American Naturalist 179:E000E000.
  • Petitpierre, B. , C. Kueffer , O. Broennimann , C. Randin , C. Daehler , and A. Guisan . 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335:13441348.
  • Phillips, C. B. , D. B. Baird , I. I. Iline , M. R. McNeill , J. R. Proffitt , S. L. Goldson , and J. M. Kean . 2008. East meets west: adaptive evolution of an insect introduced for biological control. Journal of Applied Ecology 45:948956.
  • Remington, C. L. 1968. The population genetics of insect introduction. Annual Review of Entomology 13:415426.
  • Richards, L. J. , and J. H. Myers . 1980. Maternal influences on size and emergence time of the cinnabar moth. Canadian Journal of Zoology 58:14521457.
  • Ritcher, P. O. 1966. Biological Control of Insects and Weeds in Oregon. Oregon State University, Corvallis, Oregon, USA.
  • Roderick, G. K. , and M. Navajas . 2003. Genes in new environments: genetics and evolution in biological control. Nature Reviews Genetics 4:889899.
  • Roff, D. A. 1997. Evolutionary Quantitative Genetics. Chapman & Hall, New York.
  • Roush, R. T. 1990. Genetic variation in natural enemies: Critical issues for colonization in biological control. In M. Mackauer , L. E. Ehler , and J. Roland , eds. Critical Issues in Biological Control, pp. 263288. Intercept, Ltd, Andover, UK.
  • Rudd, N. T. , and P. B. McEvoy . 1996. Local dispersal by the cinnabar moth Tyria jacobaeae . Ecological Applications 61:285297.
  • Schaffner, U. 2001. Host range testing of insects for biological weed control: how can it be better interpreted? BioScience 51:951959.
  • Schoener, T. W. 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426429.
  • Secord, D. , and P. Kareiva . 1996. Perils and pitfalls in the host specificity paradigm. BioScience 46:448453.
  • Sheppard, A. W. , R. Hill , R. A. DeClerck-Floate , A. McClay , T. Olckers , P. C. Quimby Jr , and H. G. Zimmermann . 2003. A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: a crisis in the making? Biocontrol News and Information 24:77N94N.
  • Sheppard, A. W. , R. D. van Klinken , and T. A. Heard . 2005. Scientific advances in the analysis of direct risks of weed biological control agents to nontarget plants. Biological Control 35:215226.
  • Simberloff, D. , and P. Stiling . 1996. How risky is biological control? Ecology 77:19651974.
  • Szűcs, M. , U. Schaffner , W. J. Price , and M. Schwarzländer . 2012. Post-introduction evolution in the biological control agent Longitarsus jacobaeae (Coleoptera: Chrysomelidae). Evolutionary Applications, [Epub ahead of print doi:10.1111/j.1752-4571.2012.00264.x].
  • Thrall, P. H. , J. G. Oakeshott , G. Fitt , S. Southerton , J. J. Burdon , A. Sheppard , R. J. Russell et al. 2011. Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro ecosystems. Evolutionary Applications 4:200215.
  • Travis, J. , and D. J. Futuyma . 1993. Global change: lessons from and for evolutionary biology. In P. M. Kareiva , J. G. Kingsolver , and R. B. Huey , eds. Biotic Interactions and Global Change, pp. 251263. Sinauer, Sunderland, Massachusetts.
  • Wajnberg, E. 2004. Measuring genetic variation in natural enemies used for biological control. Why and How? In E. Wajnberg , L. Ehler , R. Sforza , and T. Mateille , eds. Genetics, Evolution and Biological Control, pp. 1937. CABI International, Wallingford, UK.
  • Wink, M. , and L. Legal . 2001. Evidence for two genetically and chemically defined host races of Tyria jacobaeae (Arctiidae, Lepidoptera). Chemoecology 11:199207.
  • Zalucki, M. P. , and R. D. van Klinken . 2006. Predicting population dynamics of weed biological control agents: science or gazing into crystal balls? Australian Journal of Entomology 45:331344.