• 1
    Arroliga AC, Dweik RA, Kaneko FJ, Erzurum SC. Primary pulmonary hypertension: update on pathogenesis and novel therapies. Cleve Clin J Med. 2000; 67(3): 175178, 181–175, 189–190.
  • 2
    Rubin LJ. Primary pulmonary hypertension. N Engl J Med. 1997; 336(2): 111117.
  • 3
    Kaneko FT, Arroliga AC, Dweik RA, Comhair SA, Laskowski D, Oppedisano R, Thomassen MJ, Erzurum SC. Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med. 1998; 158(3): 917923.
  • 4
    Dweik RA, Erzurum S. Effects of nitric oxide and cyclic GMP on smooth muscle proliferation. LAM and other diseases characterized by smooth muscle proliferation. Vol 131. New York : Marcel Dekker, Inc; 1999: 333349.
  • 5
    Veyssier-Belot C, Cacoub P. Role of endothelial and smooth muscle cells in the physiopathology and treatment management of pulmonary hypertension. Cardiovasc Res. 1999; 44(2): 274282.
  • 6
    Trummer G, Berchtold-Herz M, Martin J, Beyersdorf F. Successful treatment of pulmonary hypertension with inhaled nitric oxide after pulmonary embolectomy. Ann Thorac Surg. 2002; 73(4): 12991301.
  • 7
    Azeka E, Costa Auler JO, Jr., Kajita L, Alliman AC, Franchini Ramires JA, Ebaid M. Effects of low doses of inhaled nitric oxide combined with oxygen for the evaluation of pulmonary vascular reactivity in patients with pulmonary hypertension. Pediatr Cardiol. 2002; 23(1): 2026.
  • 8
    Cooke JP, Dzau VJ. Derangements of the nitric oxide synthase pathway, L-arginine, and cardiovascular diseases. Circulation. 1997; 96(2): 379382.
  • 9
    Archer S, Rich S. Primary pulmonary hypertension: a vascular biology and translational research “work in progress”. Circulation. 2000; 102(22): 27812791.
  • 10
    Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis. 2002; 45(3): 173202.
  • 11
    Dweik RA, Laskowski D, Abu-Soud HM, Kaneko F, Hutte R, Stuehr DJ, Erzurum SC. Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Invest. 1998; 101(3): 660666.
  • 12
    Wink DA, Hanbauer I, Grisham MB, Laval F, Nims RW, Laval J, Cook J, Pacelli R, Liebmann J, Krishna M, Ford PC, Michell JB. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul. 1996; 34: 159187.
  • 13
    Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992; 258(5090): 18981902.
  • 14
    Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996; 271(5 Pt 1): C1424C1437.
  • 15
    Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA. 1997; 94(13): 69546958.
  • 16
    Wassmann S, Wassmann K, Nickenig G. Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension. 2004; 44(4): 381386.
  • 17
    Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993; 215(2): 213219.
  • 18
    Demoncheaux EA, Higenbottam TW, Kiely DG, Wong JM, Wharton S, Varcoe R, Siddons T, Spivey AC, Hall K, Gize AP. Decreased whole body endogenous nitric oxide production in patients with primary pulmonary hypertension. J Vasc Res. 2005; 42(2): 133136.
  • 19
    Ghamra ZW, Dweik RA. Primary pulmonary hypertension: an overview of epidemiology and pathogenesis. Cleve Clin J Med. 2003; 70(Suppl 1): S2S8.
  • 20
    Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Koerner SK. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987; 107(2): 216223.
  • 21
    Erzurum SC, Danel C, Gillissen A, Chu CS, Trapnell BC, Crystal RG. In vivo antioxidant gene expression in human airway epithelium of normal individuals exposed to 100% O2. J Appl Physiol. 1993; 75(3): 12561262.
  • 22
    De Raeve HR, Thunnissen FB, Kaneko FT, Guo FH, Lewis M, Kavuru MS, Secic M, Thomassen MJ, Erzurum SC. Decreased CuZn-SOD activity in asthmatic airway epithelium: correction by inhaled corticosteroid in vivo. Am J Physiol. 1997; 272(1 Pt 1): L148L154.
  • 23
    Adams JD, Jr., Lauterburg BH, Mitchell JR. Plasma glutathione disulfide as an index of oxidant stress in vivo: effects of carbon tetrachloride, dimethylnitrosamine, nitrofurantoin, metronidazole, doxorubicin and diquat. Res Commun Chem Pathol Pharmacol. 1984; 46(3): 401410.
  • 24
    Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA. 2001; 98(21): 1205612061.
  • 25
    Willard BB, Ruse CI, Keightley JA, Bond M, Kinter M. Site-specific quantitation of protein nitration using liquid chromatography/tandem mass spectrometry. Anal Chem. 2003; 75(10): 23702376.
  • 26
    Stamler JS, Loh E, Roddy MA, Currie KE, Creager MA. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994; 89(5): 20352040.
  • 27
    Cremona G, Wood AM, Hall LW, Bower EA, Higenbottam T. Effect of inhibitors of nitric oxide release and action on vascular tone in isolated lungs of pig, sheep, dog and man. J Physiol. 1994; 481(Pt 1): 185195.
  • 28
    Hasunuma K, Yamaguchi T, Rodman DM, O'Brien RF, McMurtry IF. Effects of inhibitors of EDRF and EDHF on vasoreactivity of perfused rat lungs. Am J Physiol. 1991; 260(2 Pt 1): L97L104.
  • 29
    Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ, Goggans T, Thunnissen FB, Farver C, Hazen SL, Jennings C, Dweik RA, Arroliga AC, Erzurum SC. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J. 2004; 18(14): 17461748.
  • 30
    Forsberg L, De Faire U, Morgenstern R. Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys. 2001; 389(1): 8493.
  • 31
    Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med. 1994; 17(3): 235248.
  • 32
    Marklund SL. Product of extracellular-superoxide dismutase catalysis. FEBS Lett. 1985; 184(2): 237239.
  • 33
    Marklund SL. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci USA. 1982; 79(24): 76347638.
  • 34
    Oury TD, Day BJ, Crapo JD. Extracellular superoxide dismutase in vessels and airways of humans and baboons. Free Radic Biol Med. 1996; 20(7): 957965.
  • 35
    Stralin P, Karlsson K, Johansson BO, Marklund SL. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol. 1995; 15(11): 20322036.
  • 36
    Ohta H, Adachi T, Hirano K. Internalization of human extracellular-superoxide dismutase by bovine aortic endothelial cells. Free Radic Biol Med. 1994; 16(4): 501507.
  • 37
    Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993; 91(6): 25462551.
  • 38
    Mugge A, Brandes R P, Boger RH, Dwenger A, Bode-Boger S, Kienke S, Frolich JC, Lichtlen PR. Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 1994; 24(6): 994998.
  • 39
    White CR, Brock TA, Chang LY, Crapo J, Briscoe P, Ku D, Bradley WA, Gianturco SH, Gore J, Freeman BA, et al. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci USA. 1994; 91(3): 10441048.
  • 40
    Landmesser U, Merten R, Spiekermann S, Buttner K, Drexler H, Hornig B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation. 2000; 101(19): 22642270.
  • 41
    Robbins CG, Horowitz S, Merritt TA, Kheiter A, Tierney J, Narula P, Davis JM. Recombinant human superoxide dismutase reduces lung injury caused by inhaled nitric oxide and hyperoxia. Am J Physiol. 1997; 272(5 Pt 1): L903L907.
  • 42
    Gielen S, Schuler G, Hambrecht R. Exercise training in coronary artery disease and coronary vasomotion. Circulation. 2001; 103(1): E1E6.
  • 43
    Luoma JS, Stralin P, Marklund SL, Hiltunen TP, Sarkioja T, Yla-Herttuala S. Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol. 1998; 18(2): 157167.
  • 44
    Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest. 2000; 105(11): 16311639.
  • 45
    Amstad P, Moret R, Cerutti P. Glutathione peroxidase compensates for the hypersensitivity of CuZn-superoxide dismutase overproducers to oxidant stress. J Biol Chem. 1994; 269(3): 16061609.
  • 46
    Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med. 2003; 349(17): 16051613.
  • 47
    Forgione MA, Cap A, Liao R, Moldovan NI, Eberhardt RT, Lim CC, Jones J, Goldschmidt-Clermont PJ, Loscalzo J. Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation. 2002; 106(9): 11541158.
  • 48
    Lapenna D, De Gioia S, Ciofani G, Mezzetti A, Ucchino S, Calafire AM, Napolitano AM, Di Ilio C, Cuccurullo F. Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation. 1998; 97(19): 19301934.
  • 49
    Kamezaki F, Tasaki H, Yamashita K, Tsutsui M, Koide S, Nakata S, Tanimoto A, Okazaki M, Sasaguri Y, Adachi T, Otsuji Y. Gene transfer of extracellular superoxide dismutase ameliorates pulmonary hypertension in rats. Am J Respir Crit Care Med. 2008; 177(2): 219226.
  • 50
    MacPherson JC, Comhair SA, Erzurum SC, Klein DF, Lipscomb MF, Kavuru MS, Samoszuk MK, Hazen SL. Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J Immunol. 2001; 166(9): 57635772.
  • 51
    Wu W, Samoszuk MK, Comhair SA, Thomassen MJ, Farver CF, Dweik RA, Kavuru MS, Erzurum SC, Hazen SL. Eosinophils generate brominating oxidants in allergen-induced asthma. J Clin Invest. 2000; 105(10): 14551463.
  • 52
    Ghosh S, Janocha AJ, Aronica MA, Swaidani S, Comhair SA, Xu W, Zheng L, Kaveti S, Kinter M, Hazen SL, Erzurum SC. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J Immunol. 2006; 176(9): 55875597.
  • 53
    Roberts BR, Tainer JA, Getzoff ED, Malencik DA, Anderson SR, Bomben VC, Meyers KR, Karplus PA, Beckman JS. Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. J Mol Biol. 2007; 373(4): 877890.
  • 54
    Cuzzocrea S, Salvemini D. Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int. 2007; 71(4): 290297.
  • 55
    Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA. 1993; 90(15): 72407244.