• bone cement;
  • hardware augmentation;
  • orthopedic surgery;
  • sheep;
  • translational research


We evaluated the mechanical properties of a novel fiber reinforced calcium phosphate at time zero and after 12 weeks in vivo using a sheep long bone osteotomy model. Time zero data were obtained and compared by pullout testing of 4.5 mm bone screws from bone proper and overdrilled defects of 4.5 and 8 mm diameter. Defects were augmented with: polymethylmethacrylate (PMMA), calcium phosphate, and fiber reinforced calcium phosphate using cadaveric sheep tibiae. Twelve-week data were obtained from explanted tibiae of sheep that underwent unilateral tibial osteotomy surgery repaired with a locking compression plate. The most distal hole was overdrilled to 4.5 or 8 mm diameter, filled with fiber reinforced cement, drilled, tapped and a 4.5 mm screw was placed. Screw holding strength at t= 0 was significantly higher for reinforced when compared to nonreinforced cement, but not different from bone or PMMA in 4.5 mm defects. There was no difference in pullout strength for the 8 mm defect data. After 12 weeks fiber reinforced pullout strength increased by 45% and 8.9% for 4.5 and 8 mm defects, respectively, when compared to t= 0 testing. Fiber reinforced calcium phosphate bone cement can be drilled and tapped to support orthopedic hardware for trauma applications. Clin Trans Sci 2010; Volume 3: 112–115