SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999; 286(5439): 531537.
  • 2
    Beer DG, Kardia S, Huang C-C, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 2002; 8(8): 816824.
  • 3
    Speed T. Statistical Analysis of Gene Expression Microarray Data. Boca Raton , FL : Chapman and Hall/CRC; 2003.
  • 4
    McLachlan G, Do K, Ambroise C. Analyzing Microarray Gene Expression Data. Hoboken , NJ : Wiley-Interscience; 2004.
  • 5
    Simon R, Korn EL, McShane LM, Radmacher MD, Wright GW, Zhao Y. Design and Analysis of DNA Microarray Investigations. New York: Springer Verlag; 2005.
  • 6
    Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19(2): 185193.
  • 7
    Irizarry A, Hobbs RB, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4(2): 249264.
  • 8
    Owzar K, Barry WT, Jung SH, Sohn I, George SL. Statistical challenges in preprocessing in ­microarray experiments in cancer. Clin Cancer Res.2008; 14(19): 59595966.
  • 9
    Cope LM, Irizarry RA, Jaffee HA, Wu Z, Speed TP. A benchmark for Affymetrix GeneChip expression measures. Bioinformatics.2004; 20(3): 323331.
  • 10
    Irizarry RA, Wu Z, Jaffee HA. Comparison of Affymetrix GeneChip expression measures. Bioinformatics. 2006; 22(7): 789794.
  • 11
    Schmid R, Baum P, Ittrich C, et al. Comparison of normalization methods for Illumina ­BeadChip HumanHT-12 v3. BMC Genomics. 2010; 11(1): 349.
  • 12
    Xie Y, Wang X, Story M. Statistical methods of background correction for Illumina BeadArray data. Bioinformatics. 2009; 25(6): 751757.
  • 13
    Bhattacharyya GK, Johnson RA. Statistical Concepts and Methods. Hoboken , NJ : Wiley; 1977.
  • 14
    Cox DR. Regression models and life-tables. J Stat Soc Ser B.1972; 34: 187220.
  • 15
    Jung S-H, Owzar K, George SL. A multiple testing procedure to associate gene expression levels with survival. Stat Med.2005; 24(20): 30773088.
  • 16
    Westfall PH, Young SS. Resampling-Based Multiple Testing: Examples and Methods for P-value Adjustment. Wiley Series in Probability & Mathematical Statistics: Applied Probability & Statistics. Hoboken , NJ : John Wiley & Sons; 1992.
  • 17
    Ge Y, Dudoit S, Speed TP. Resampling-based multiple testing for microarray data analysis. TEST2003; 12(1): 177.
  • 18
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful ­approach to multiple testing. J Stat Soc Ser B.1995; 57: 289300.
  • 19
    Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. newblock Ann Statist.2001; 29: 11651188.
  • 20
    Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Statist.2003; 31(6): 20132035.
  • 21
    Jung SH, Jang W. How accurately can we control the FDR in analyzing microarray data? ­Bioinformatics2006; 22: 17301736.
  • 22
    Mardia KV, Kent JT, Bibby JM. Multivariate Analysis. San Diego , CA : Academic Press; 1979.
  • 23
    Devroye L, Györfi L, Lugosi G. A Probabilistic Theory of Pattern Recognition. New York : ­Springer; 1996.
  • 24
    Schoelkopf B, Smola AJ. Learning with Kernels. Cambridge , MA : MIT Press; 2002.
  • 25
    Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees. Chapman and Hall/CRC; 1984.
  • 26
    Breiman L. Random forests. Mach Learn2001; 45: 532.
  • 27
    Ripley BD. Pattern Recognition and Neural Networks. Cambridge : Cambridge University Press; 1996.
  • 28
    Tibshirani R. Regression shrinkage and selection via the LASSO. J Stat Soc Ser B.1996; 58(1): 267288.
  • 29
    Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, ­Inference, and Prediction. Second Edition. New York: Springer-Verlag; 2009.
  • 30
    Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in ­oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet.2003; 34(3): 267273.
  • 31
    Efron B, Tibshirani R.On testing the significance of sets of genes. Ann Appl Stat.2007; 1(1): 107129.
  • 32
    Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics. 2005; 21(9): 19431949.
  • 33
    Barry WT, Nobel AB, Wright FA. A statistical framework for testing functional categories in microarray data. Ann Appl Stat.2008; 2(1): 286315.
  • 34
    Witte JS, Elston RC, Cardon LR. On the relative sample size required for multiple comparisons. Stat Med.2000; 29: 369372.
  • 35
    Wolfinger RD, Gibson G, Wolfinger ED, et al. Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol.2001; 8: 625637.
  • 36
    Black MA, Doerge RW. Calculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray experiments. Bioinformatics. 2002; 18: 16091616.
  • 37
    Pan W, Lin J, Le CT. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol.2002; 3(5): 110.
  • 38
    Cui X, Churchill GA. How many mice and how many arrays? Replication in mouse cDNA microarray experiments. In: Johnson KJ, Lin S (eds.), Methods of Microarray Data Analysis II. Norwell , MA : Kluwer Academic Publishers; 2003: 139154.
  • 39
    Whitmore GA, Lee MLT. Power and sample size for DNA microarray studies. Stat Med.2002; 21: 35433570.
  • 40
    Jung SH, Bang H, Young SS. Sample size calculation for multiple testing in microarray data analysis. Biostatics2005; 6: 157169.
  • 41
    Jung SH, Young SS. Power and sample size calculation for microarray studies. J Biopharm Stat. In press.
  • 42
    Jung SH. Sample size for FDR-control in microarray data analysis. Bioinformatics. 1995; 21: 30973103.
  • 43
    Pounds S, Cheng C. Sample size determination for the false discovery rate. Bioinformatics. 2005; 21: 42364271.
  • 44
    Liu P, Hwang JTG. Quick calculation for sample size while controlling false discovery rate with application to microarray analysis. Bioinformatics. 2007; 23: 739746.
  • 45
    Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas ­distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001; 98: 1086910874.
  • 46
    Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001; 98: 1379013795.
  • 47
    Van ’t Veer LJ, Dai H, Van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002; 415: 530536.
  • 48
    R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna , Austria : R Foundation for Statistical Computing; 2006.
  • 49
    Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for ­computational biology and bioinformatics. Genome Biol. 2004; 5: R80.
  • 50
    Buckner J, Wilson J, Seligman M, et al. The gputools package enables GPU computing in R. Bioinformatics. 2010; 26(1): 134135.
  • 51
    Shterev ID, Jung SH, George SL, et al. permGPU: using graphics processing units in RNA microarray association studies. BMC Bioinformatics. 2010; 11(329).
  • 52
    Knuth DE. Literate Programming. California : Stanford University Center for the Study of Language and Information; 1992.
  • 53
    F. Leisch. Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis in Compstat 2002 — Proceedings in Computational Statistics. Heidelberg : Physica Verlag; 2002: 575580.
  • 54
    Venables B, Ripley B. Modern Applied Statistics with S. Fourth Edition.New York: Springer Verlag; 2002.
  • 55
    Dalgaard P.Introductory Statistics with R. New York : Springer Verlag; 2002.
  • 56
    Gentleman R, Carey V, Huber W, et al. eds. Bioinformatics and Computational Biology ­Solutions Using R and Bioconductor. New York: Springer Verlag; 2005.
  • 57
    Hahne F, Huber W, Gentleman R, et al. eds. Bioconductor Case Studies. New York : Springer Verlag; 2008.