• 1
    Ginsberg HN, Maccallum PR. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: II. Therapeutic management of atherogenic dyslipidemia. J Clin Hypertens (Greenwich).2009; 11: 520527.
  • 2
    Miller GJ, Miller NE. Plasma-high-density-lipoprotein concentration and development of ­ischaemic heart-disease. Lancet.1975; 1: 1619.
  • 3
    Nicholls SJ. HDL: still a target for new therapies?Curr Opin Investig Drugs.2008; 9: 950956.
  • 4
    Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of ­atherosclerosis?Circulation.2006; 113: 25482555.
  • 5
    Weber O, Bischoff H, Schmeck C, Böttcher MF. Cholesteryl ester transfer protein and its ­inhibition. Cell Mol Life Sci.2010; 67: 31393149.
  • 6
    Schwartz CC, VandenBroek JM, Cooper JS. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res.2004; 45: 15941607.
  • 7
    Ouguerram K, Krempf M, Maugeais C, Maugère P, Darmaun D, Magot T. A new labeling ­approach using stable isotopes to study in vivo plasma cholesterol metabolism in humans. ­Metabolism.2002; 51: 511.
  • 8
    Grass DS, Saini U, Felkner RH, Wallace RE, Lago WJ, Young SG, Swanson ME. Transgenic mice expressing both human apolipoprotein B and human CETP have a lipoprotein cholesterol distribution similar to that of normolipidemic humans. J Lipid Res.1995; 36: 10821091.
  • 9
    Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat GH, Rader DJ. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation.2007; 116: 12671273.
  • 10
    Hernandez M, Wright SD, Cai TQ. Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochem Biophys Res Commun.2007; 355: 10751080.
  • 11
    Hansen MK, McVey MJ, White RF, Legos JJ, Brusq JM, Grillot DA, Issandou M, Barone FC. Selective CETP inhibition and PPARalpha agonism increase HDL cholesterol and reduce LDL cholesterol in human ApoB100/human CETP transgenic mice. J Cardiovasc Pharmacol Ther.2010; 15: 196202.
  • 12
    Winzell MS, Ahrén B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes.2004; 53(Suppl 3): S215S219.
  • 13
    Briand F, Tréguier M, André A, Grillot D, Issandou M, Ouguerram K, Sulpice T. Liver X receptor activation promotes macrophage-to-feces reverse cholesterol transport in a dyslipidemic hamster model. J Lipid Res.2010; 51: 763770.
  • 14
    van Leuven SI, Stroes ES, Kastelein JJ. High-density lipoprotein: a fall from grace?Ann Med.2008; 40: 584593.
  • 15
    Tall AR. The effects of cholesterol ester transfer protein inhibition on cholesterol efflux. Am J Cardiol.2009; 104(10 Suppl): 39E45E.
  • 16
    Mahlberg FH, Glick JM, Lund-Katz S, Rothblat GH. Influence of apolipoproteins AI, AII, and Cs on the metabolism of membrane and lysosomal cholesterol in macrophages. J Biol Chem.1991; 266: 1993019937.
  • 17
    Yvan-Charvet L, Kling J, Pagler T, Li H, Hubbard B, Fisher T, Sparrow CP, Taggart AK, Tall AR. ­Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler Thromb Vasc Biol.2010; 30: 14301438.
  • 18
    Matsuura F, Wang N, Chen W, Jiang XC, Tall AR. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J Clin Invest.2006; 116: 14351442.
  • 19
    Yvan-Charvet L, Matsuura F, Wang N, Bamberger MJ, Nguyen T, Rinninger F, Jiang XC, Shear CL, Tall AR. Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler Thromb Vasc Biol.2007; 27: 11321138.
  • 20
    Kee P, Caiazza D, Rye KA, Barrett PH, Morehouse LA, Barter PJ. Effect of inhibiting cholesteryl ester transfer protein on the kinetics of high-density lipoprotein cholesteryl ester transport in ­plasma: in vivo studies in rabbits. Arterioscler Thromb Vasc Biol.2006; 26: 884890.
  • 21
    Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science.1988; 240: 622630.
  • 22
    Quarfordt S, Hanks J, Jones RS, Shelburne F. The uptake of high density lipoprotein cholesteryl ester in the perfused rat liver. J Biol Chem.1980; 255: 29342937.
  • 23
    Catalano G, Julia Z, Frisdal E, Vedie B, Fournier N, Le Goff W, Chapman MJ, Guerin M. Torcetrapib differentially modulates the biological activities of HDL2 and HDL3 particles in the reverse cholesterol transport pathway. Arterioscler Thromb Vasc Biol.2009; 29: 268275.
  • 24
    Brousseau ME, Diffenderfer MR, Millar JS, Nartsupha C, Asztalos BF, Welty FK, Wolfe ML, Rudling M, Björkhem I, Angelin B, et al. Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies, apolipoprotein A-I metabolism, and fecal sterol excretion. Arterioscler Thromb Vasc Biol.2005; 25: 10571064.
  • 25
    Niesor EJ, Magg C, Ogawa N, Okamoto H, von der Mark E, Matile H, Schmid G, Clerc RG, Chaput E, Blum-Kaelin D, et al. Modulating cholesteryl ester transfer protein activity maintains efficient pre-HDL formation and increases reverse cholesterol transport. J Lipid Res.2010; 51: 34433454.
  • 26
    Mackinnon AM, Drevon CA, Sand TM, Davis RA. Regulation of bile acid synthesis in cultured rat hepatocytes: stimulation by apoE-rich high density lipoproteins. J Lipid Res.1987; 28: 847855.
  • 27
    Han R, Lai R, Ding Q, Wang Z, Luo X, Zhang Y, Cui G, He J, Liu W, Chen Y. Apolipoprotein A-I stimulates AMP-activated protein kinase and improves glucose metabolism. Diabetologia.2007; 50: 19601968.
  • 28
    Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, Thomas WG, Mukhamedova N, de Courten B, Forbes JM, et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation.2009; 119: 21032111.
  • 29
    Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK, Rye KA. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol.2010; 30: 16421648.
  • 30
    Ruan X, Li Z, Zhang Y, Yang L, Pan Y, Wang Z, Feng GS, Chen Y. Apolipoprotein A-I possesses an anti-obesity effect associated with increase of energy expenditure and upregulation of UCP1 in brown fat. J Cell Mol Med.2011; 15: 763772.
  • 31
    Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, et al. ILLUMINATE Investigators. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med.2007; 357: 21092122.
  • 32
    Hu X, Dietz JD, Xia C, Knight DR, Loging WT, Smith AH, Yuan H, Perry DA, Keiser J. Torcetrapib induces aldosterone and cortisol production by an intracellular calcium-mediated mechanism independently of cholesteryl ester transfer protein inhibition. Endocrinology.2009; 150: 22112219.
  • 33
    Stein EA, Stroes ES, Steiner G, Buckley BM, Capponi AM, Burgess T, Niesor EJ, Kallend D, Kastelein JJ. Safety and tolerability of dalcetrapib. Am J Cardiol.2009; 104: 8291.
  • 34
    Cannon CP, Shah S, Dansky HM, Davidson M, Brinton EA, Gotto AM, Stepanavage M, Liu SX, Gibbons P, Ashraf TB, et al. Determining the efficacy and tolerability investigators. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med.2010; 363: 24062415.