SEARCH

SEARCH BY CITATION

References

  • 1
    DeLuca HF. Vitamin D: the vitamin and the hormone. Fed Proc 1974;33:22119.
  • 2
    DeLuca HF, Schnoes HK. Vitamin D: recent advances. Ann Rev Biochem 1983;52:41139.
  • 3
    Lund J., DeLuca HF. Biologically active metabolite of vitamin D3 from bone, liver, and blood serum. J Lipid Res 1966;7:73944.
  • 4
    Morii H., Lund J., Neville PF, DeLuca HF. Biological activity of a vitamin D metabolite. Arch Biochem Biophys 1967;120:50812.
  • 5
    DeLuca HF. Vitamin D: 1993. Nutr Today 1993;28:611.
  • 6
    DeLuca HF. The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J 1988;2:22436.
  • 7
    DeLuca HF. The control of calcium and phosphorus metabolism by the vitamin D endocrine system. In: LevanderOA, ChengL., eds. Micronutrient interactions: vitamins, minerals, and hazardous element. New York , NY : New York Academy of Sciences, 1980: 355: 117.
  • 8
    DeLuca HF. New concepts of vitamin D functions. In: SauberlichHE, MachlinKJ, eds. Beyond deficiency. New views on the function and health effects of vitamins. New York , NY : New York Academy of Sciences, 1992;669:5969.
  • 9
    Stumpf WE, Sar M., DeLuca HF. Sites of action of 1,25 (OH)2 vitamin D3 identified by thaw-mount autoradiography. In: CohnDV, TalmageRV, MatthewsJL, eds. Hormonal control of calcium metabolism. Amsterdam , The Netherlands : Exerpta Medica, 1981: 22229.
  • 10
    Stumpf WE, Sar M., Reid FA, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science 1979;206:118890.
  • 11
    Fraser D., Kooh SW, Kind HP, et al. Pathogenesis of hereditary vitamin D dependent rickets: an inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1α, 25-dihydroxyvitamin D. New Engl J Med 1973;289:81722.
  • 12
    Boyle IT, Miravet L., Gray RW, et al. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxy vitamin D in nephrectomized rats. Endocrinology 1972;90:6058.
  • 13
    Holick MF, Garabedian M., DeLuca HF. 1,25-Dihydroxychole-calciferol: metabolite of vitamin D3 active on bone in anephric rats. Science 1971;176:11467.
  • 14
    Brommage R., DeLuca HF. Evidence that 1,25-dihydroxyvitamin D3 is the physiologically active metabolite of vitamin D3. Endocr Rev 1985;6:491511.
  • 15
    Ohshima E., Sai H., Takatsuto S., et al. Synthesis and biological activity of 1α-fluoro-25-hydroxyvitamin D3. Chem Pharm Bull 1984;32:352531.
  • 16
    Perlman KL, Prahl JM, Smith C., et al. 26,27-Dihomo-1α- hydroxy- and 26,27-dihomo-24-epi-1α, 25-dihy-droxyvitamin D2 analogs which differ markedly in biological activity in vivo. J Biol Chem 1994;269:240149.
  • 17
    Pike JW, Haussler MR. Purification of chicken intestinal receptor for 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1979;76:54859.
  • 18
    Simpson RU, Hamstra A., Kendrick NC, et al. Purification of the receptor for 1α, 25-dihydroxyvitamin D3 from chicken intestine. Biochemistry 1983;22:258694.
  • 19
    Dame MC, Pierce EA, Prahl JM, et al. Monoclonal antibodies to the porcine intestinal receptor for 1,25-dihydroxyvitamin D3: interaction with distinct receptor domains. Biochemistry 1986;25:452334.
  • 20
    Pike JW, Marion SL, Donaldson CA, et al. Serum and monoclonal antibodies against the chicken intestinal receptor for 1,25-dihydroxyvitamin D3. J Biol Chem 1983;258:128996.
  • 21
    Baker AR, McDonnell DP, Hughes M., et al. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 1988;85:32948.
  • 22
    Burmester JK, Maeda N., DeLuca HF. Isolation and expression of rat 1,25-dihydroxyvitamin D3 receptor cDNA. Proc Natl Acad Sci USA 1988;85:10059.
  • 23
    Burmester JK, Wiese RJ, Maeda N., et al. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA 1988;85:9499502.
  • 24
    McDonnell DP, Pike JW, O'Malley BW. The vitamin D receptor: a primitive steroid receptor related to thyroid hormone receptor. J Steroid Biochem 1988;30:417.
  • 25
    Lu Z., Hanson K., DeLuca HF. Cloning and origin of the two forms of chicken vitamin D receptor. Arch Biochem Biophys 1997;339:99106.
  • 26
    Jehan F., DeLuca HF. Cloning and characterization of the mouse vitamin D receptor promoter. Proc Natl Acad Sci USA 1997;94:1013843.
  • 27
    Pike JW. Vitamin D3 receptors: structure and function in transcription. Annu Rev Nutr 1991;11:189216.
  • 28
    vom Baur E., Zechel C., Heery D., et al. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J 1996;15:11024.
  • 29
    Ross TK, Darwish HM, DeLuca HF. Molecular biology of vitamin D action. In: LitwackG., ed. Vitamins and hormones. San Diego , CA : Academic Press, 1994;49:281326.
  • 30
    Zierold C., Darwish HM, DeLuca HF. Two vitamin D response elements function in the rat 1,25-dihydroxyvitamin D 24-hydroxylase promoter. J Biol Chem 1995;270:16758.
  • 31
    Chen K-S, DeLuca HF. Cloning of the human 1α, 25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta 1995;1263:19.
  • 32
    Umesono K., Murakami KK, Thompson CC, et al. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991;65:125566.
  • 33
    Munder M., Herzberg IM, Zierold C., et al. Identification of the porcine intestinal accessory factor that enables DNA sequence recognition by vitamin D receptor. Proc Natl Acad Sci USA 1995;92:27959.
  • 34
    Kliewer SA, Umesono K., Mangelsdorf DJ, et al. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signaling. Nature 1991;355:4469.
  • 35
    Freedman LP, Arce V., Fernandez RP. DNA sequences that act as high affinity targets for the vitamin D3 receptor in the absence of the retinoid X receptor. Mol Endocrinol 1994;8:26573.
  • 36
    Lemon BL, Freedman, LP. Selective effects of ligands on vitamin D3 receptor– and retinoid X receptor–mediated gene activation in vivo. Mol Cell Biol 1996;16:100616.
  • 37
    Kurokawa R., DiRenzo J., Boehm M., et al. Regulation of retinoid signaling by receptor polarity and allosteric control of ligand binding. Nature 1994;371:52831.
  • 38
    Masuyama H., Jefcoat S. Jr, MacDonald PN. The N-terminal domain of transcription factor IIB is required for direct interaction with the vitamin D receptor and participates in vitamin D-mediated transcription. Mol Endocrinol 1997;11:21828.
  • 39
    Blanco JCG, Wang I-M, Tsai SY. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci USA 1995;92:15359.
  • 40
    Zierold C., Strugnell SA, DeLuca HF. Transcription factor IIB is required for complex formation of the vitamin D receptor with its response element. J Bone Min Res 1995; 10 (Suppl 1): 5395.
  • 41
    Kimmel-Jehan C., Jehan F., DeLuca HF. Salt concentration determines 1, 25-dihydroxyvitamin D3 dependency of VDR-RXR-VDRE complex formation. Arch Biochem Biophys 1997;341:7580.
  • 42
    Nemere I., Yoshimoto Y., Norman AW. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1, 25-dihydroxyvitamin D3. Endocrinology 1984;115:147683.
  • 43
    Nemere I. Nongenomic effects of 1,25-dihydroxyvitamin D3: potential relation of a plasmalemmal receptor to the acute enhancement of intestinal calcium transport in chick. J Nutr 1995; 125: 1695S8S.
  • 44
    Brooks MH, Bell NH, Love L., et al. Vitamin D-dependent rickets Type II. Resistance of target organs to 1,25-dihydroxyvitamin D. New Engl J Med 1978;298:9969.
  • 45
    Rosen JF, Fleischman AR, Finberg L., et al. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatr 1979;94:72935.
  • 46
    Wiese RJ, Goto H., Prahl JM, et al. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol 1993;90:197201.
  • 47
    Hughes M., Malloy P., Kieback D., et al. Human vitamin D receptor mutations: identification of molecular defects in hypocalcemic vitamin D resistant rickets. Adv Exp Med Biol 1989;255:491503.
  • 48
    Malloy PJ, Hochberg Z., Tiosano D., et al. The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families. J Clin Invest 1990;86:20719.
  • 49
    Yoshizawa T., Handa Y., Uematsu Y., et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nature Genetics 1997;16:3916.
  • 50
    Abe E., Miyaura C., Sakagami H., et al. Differentiation of mouse myeloid leukemia cells induced by 1α, 25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1981;78:49904.
  • 51
    Tanaka H., Abe E., Miyaura C., et al. 1α, 25-Dihydroxychole-calciferol and a human myeloid leukaemia cell line (HL-60). The presence of a cytosol receptor and induction of differentiation. Biochem J 1982;204:7139.
  • 52
    Dokoh S., Donaldson CA, Haussler MR. Influence of 1, 25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells: correlation with the 1, 25-dihydroxyvitamin D3 receptor. Cancer Res 1984;44:21039.
  • 53
    Eisman JA, Martin TJ, MacIntyre I. 1, 25-Dihydroxyvitamin D3 receptors in cancer. Lancet 1980; i: 1188.
  • 54
    Holick MF. 1, 25-Dihydroxyvitamin D3 and the skin: a unique application for the treatment of psoriasis. Proc Soc Exp Biol Med 1989;191:24657.
  • 55
    Manolagas SC, Hustmyer FF, Yu X-P. 1,25-Dihydroxyvitamin D3 and the immune system. Proc Soc Exp Biol Med 1989;191:23845.
  • 56
    Yang S., Smith C., DeLuca HF. 1a, 25-Dihydroxyvitamin D3 and 19-nor-1a, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta 1993;1158:26986.
  • 57
    Yang S., Smith C., Prahl JM, et al. Vitamin D deficiency suppress cell-mediated immunity in vivo. Arch Biochem Biophys 1993;303:98106.
  • 58
    Cantorna MT, Hayes CE, DeLuca HF. 1, 25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis. Proc Natl Acad Sci USA 1996;93:78614.