SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Rahman I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung disease. J Biochem Mol Biol. 2003;36:95109.
  • 2
    Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28:219242.
  • 3
    Rahman I, Marwick JA, Kirkham PA. Redox modulation of histone acetylation and deacetylation in vitro and in vivo: modulation of NF-κB and pro-inflammatory genes. Biochem Pharmacol. 2004;68:12551267.
  • 4
    Rahman I, Gilmour P, Jimenez LA, Mac Nee W. Oxidative stress and TNF-α induce histone acetylation and AP-1/NF-κB in alveolar epithelial cells: potential mechanism in inflammatory gene transcription. Mol Cell Biochem. 2002;234/235:239248.
  • 5
    Marwick JA, Giddings J, Butler K, et al. Cigarette smoke induces inflammatory response and alters chromatin remodeling in rat lungs. Am J Respir Cell Mol Biol. 2004;31:633642.
  • 6
    Moodie F, Marwick JA, Anderson C, et al. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-κB activation and pro-inflammatory cytokine release in alveolar epithelial cells. FASEB J. 2004;18:18971909.
  • 7
    Yang SR, Chida AS, Bauter MR, et al. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol. 2006;291:L46–57.
  • 8
    Ito K, Lim G, Caramori G, Chung KF, Barnes PJ, Adcock IM. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 2001;15:11101112.
  • 9
    Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23:363398.
  • 10
    Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol. 1978;43:8692.
  • 11
    Cheng A-L, Hsu C-H, Lin J-K, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:28952900.
  • 12
    Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353356.
  • 13
    Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I. Curcumin induces glutathione biosynthesis and inhibits oxidant- and TNF-α-mediated NF-κB activation and chromatin remodeling in alveolar epithelial cells. Antioxid Redox Signal. 2005;7:3241.
  • 14
    Kang J, Chen J, Shi Y, Jia J, Zhang Y. Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol. 2005;69:12051213.
  • 15
    Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004;24:27832840.
  • 16
    Pervaiz S. Resveratrol: from grapevines to mammalian biology. FASEB J. 2003;14:19751985.
  • 17
    Culpitt SV, Rogers DF, Fenwick PS, et al. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax. 2003;58:942946.
  • 18
    Birrell MA, McCluskie K, Wong S, Donnelly LE, Barnes PJ, Belvisi MG. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-KappaB-independent mechanism. FASEB J. 2005;19:840841.
  • 19
    Donnelly LE, Newton R, Kennedy GE, et al. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol. 2004;287:L774783.
  • 20
    Yang SR, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol. 2007;292:L567–576.