StatFingerprints: a friendly graphical interface program for processing and analysis of microbial fingerprint profiles

Authors

  • R. J. MICHELLAND,

    1. INRA, UMR 1289 TANDEM, Tissus Animaux, Nutrition, Digestion, Ecosystème et Métabolisme, Université de Toulouse, F-31326 Castanet-Tolosan cedex, France,
    2. INPT-ENSAT, UMR 1289 TANDEM, Université de Toulouse, F-31326 Castanet-Tolosan cedex, France,
    3. ENVT, UMR 1289 TANDEM, F-31076 Toulouse cedex, France,
    Search for more papers by this author
  • S. DEJEAN,

    1. Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse cedex 9, France
    Search for more papers by this author
  • S. COMBES,

    1. INRA, UMR 1289 TANDEM, Tissus Animaux, Nutrition, Digestion, Ecosystème et Métabolisme, Université de Toulouse, F-31326 Castanet-Tolosan cedex, France,
    Search for more papers by this author
  • L. FORTUN-LAMOTHE,

    1. INRA, UMR 1289 TANDEM, Tissus Animaux, Nutrition, Digestion, Ecosystème et Métabolisme, Université de Toulouse, F-31326 Castanet-Tolosan cedex, France,
    Search for more papers by this author
  • L. CAUQUIL

    1. INRA, UMR 1289 TANDEM, Tissus Animaux, Nutrition, Digestion, Ecosystème et Métabolisme, Université de Toulouse, F-31326 Castanet-Tolosan cedex, France,
    Search for more papers by this author

Laurent Cauquil, Fax: 33 (5) 61 28 53 18; E-mail: laurent.cauquil@toulouse.inra.fr

Abstract

Molecular fingerprint methods are widely used to compare microbial communities in various habitats. The free program StatFingerprints can import, process, and display fingerprint profiles and perform numerous statistical analyses on them, and also estimate diversity indexes. StatFingerprints works with the free program R, providing an environment for statistical computing and graphics. No programming knowledge is required to use StatFingerprints, thanks to its friendly graphical user interface. StatFingerprints is useful for analysing the effect of a controlled factor on the microbial community and for establishing the relationships between the microbial community and the parameters of its environment. Multivariate analyses include ordination, clustering methods and hypothesis-driven tests like 50–50 multivariate analysis of variance, analysis of similarity or similarity percentage procedure and the program offers the possibility of plotting ordinations as a three-dimensional display.

Ancillary