• balancing selection;
  • candidate markers;
  • divergent selection;
  • FST outlier tests


Genome scans with many genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under selection. In particular, SNPs are dense throughout the genome of most organisms and are commonly observed in functional genes making them ideal markers to study adaptive molecular variation. This approach has become commonly employed in ecological and population genetics studies to detect outlier loci that are putatively under selection. However, there are several challenges to address with outlier approaches including genotyping errors, underlying population structure and false positives, variation in mutation rate and limited sensitivity (false negatives). In this study, we evaluated multiple outlier tests and their type I (false positive) and type II (false negative) error rates in a series of simulated data sets. Comparisons included simulation procedures (FDIST2, arlequin v.3.5 and BAYESCAN) as well as more conventional tools such as global FST histograms. Of the three simulation methods, FDIST2 and BAYESCAN typically had the lowest type II error, BAYESCAN had the least type I error and Arlequin had highest type I and II error. High error rates in Arlequin with a hierarchical approach were partially because of confounding scenarios where patterns of adaptive variation were contrary to neutral structure; however, Arlequin consistently had highest type I and type II error in all four simulation scenarios tested in this study. Given the results provided here, it is important that outlier loci are interpreted cautiously and error rates of various methods are taken into consideration in studies of adaptive molecular variation, especially when hierarchical structure is included.