SEARCH

SEARCH BY CITATION

References

  • Aksu, G., Kutukculer, N., Genel, F., Vergin, C., and Omowaire, B. (2003). Griscelli syndrome without hemophagocytosis in an eleven-year-old girl: expanding the phenotypic spectrum of Rab27A mutations in humans. Am. J. Med. Genet. A 116A, 329333.
  • Anant, J.S., Desnoyers, L., Machius, M., Demeler, B., Hansen, J.C., Westover, K.D., Deisenhofer, J., and Seabra, M.C. (1998). Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 37, 1255912568.
  • Anikster, Y., Huizing, M., Anderson, P.D., Fitzpatrick, D.L., Klar, A., Gross-Kieselstein, E., Berkun, Y., Shazberg, G., Gahl, W.A., and Hurvitz, H. (2002). Evidence that Griscelli syndrome with neurological involvement is caused by mutations in RAB27A, not MYO5A. Am. J. Hum. Genet. 71, 407414.
  • Arico, M., Zecca, M., Santoro, N., Caselli, D., Maccario, R., Danesino, C., De Saint Basile, G., and Locatelli, F. (2002). Successful treatment of Griscelli syndrome with unrelated donor allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 29, 995998.
  • Bahadoran, P., Aberdam, E., Mantoux, F., Busca, R., Bille, K., Yalman, N., De Saint-Basile, G., Casaroli-Marano, R., Ortonne, J.P., and Ballotti, R. (2001). Rab27a: a key to melanosome transport in human melanocytes. J. Cell Biol. 152, 843850.
  • Bahadoran, P., Busca, R., Chiaverini, C. et al. (2003). Characterization of the molecular defects in Rab27a, caused by RAB27A missense mutations found in patients with Griscelli syndrome. J. Biol. Chem. 278, 1138611392.
  • Barral, D.C., and Seabra, M.C. (2004). The melanosome as a model to study organelle motility in mammals. Pigment Cell Res. 17, 111118.
  • Barral, D.C., Ramalho, J.S., Anders, R., Hume, A.N., Knapton, H.J., Tolmachova, T., Collinson, L.M., Goulding, D., Authi, K.S., and Seabra, M.C. (2002). Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J. Clin. Invest. 110, 247257.
  • Bizario, J.C., Feldmann, J., Castro, F.A., Menasche, G., Jacob, C.M., Cristofani, L., Casella, E.B., Voltarelli, J.C., De Saint-Basile, G., and Espreafico, E.M. (2004). Griscelli syndrome: characterization of a new mutation and rescue of T-cytotoxic activity by retroviral transfer of RAB27A gene. J. Clin. Immunol. 24, 397410.
  • Briganti, S., Camera, E., and Picardo, M. (2003). Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16, 101110.
  • Cahali, J.B., Fernandez, S.A., Oliveira, Z.N., Machado, M.C., Valente, N.S., and Sotto, M.N. (2004). Elejalde syndrome: report of a case and review of the literature. Pediatr. Dermatol. 21, 479482.
  • Chen, D., Guo, J., Miki, T., Tachibana, M., and Gahl, W.A. (1997). Molecular cloning and characterization of rab27a and rab27b, novel human rab proteins shared by melanocytes and platelets. Biochem. Mol. Med. 60, 2737.
  • Chen, Y., Samaraweera, P., Sun, T.T., Kreibich, G., and Orlow, S.J. (2002). Rab27b association with melanosomes: dominant negative mutants disrupt melanosomal movement. J. Invest. Dermatol. 118, 933940.
  • Chiaverini, C., Beuret, L., Flori, E., Busca, R., Abbe, P., Bille, K., Bahadoran, P., Ortonne, J.P., Bertolotto, C., and Ballotti, R. (2008). Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport. J. Biol. Chem. 283, 1263512642.
  • Corbeel, L., and Freson, K. (2008). Rab proteins and Rab-associated proteins: major actors in the mechanism of protein-trafficking disorders. Eur. J. Pediatr. 167, 723729.
  • Coudrier, E. (2007). Myosins in melanocytes: to move or not to move? Pigment Cell Res. 20, 153160.
  • Den Dunnen, J.T., and Antonarakis, S.E. (2000). Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum. Mutat. 15, 712.
  • Duran-Mckinster, C., Rodriguez-Jurado, R., Ridaura, C., De La Luz Orozco-Covarrubias, M., Tamayo, L., and Ruiz-Maldonando, R. (1999). Elejalde syndrome – a melanolysosomal neurocutaneous syndrome: clinical and morphological findings in 7 patients. Arch. Dermatol. 135, 182186.
  • El-Amraoui, A., Schonn, J.S., Kussel-Andermann, P., Blanchard, S., Desnos, C., Henry, J.P., Wolfrum, U., Darchen, F., and Petit, C. (2002). MyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes. EMBO Rep. 3, 463470.
  • Figueiredo, A.C., Wasmeier, C., Tarafder, A.K., Ramalho, J.S., Baron, R.A., and Seabra, M.C. (2008). Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes. J. Biol. Chem. 283, 2320923216.
  • Fukuda, M. (2002). Synaptotagmin-like protein (Slp) homology domain 1 of Slac2-a/melanophilin is a critical determinant of GTP-dependent specific binding to Rab27A. J. Biol. Chem. 277, 4011840124.
  • Fukuda, M. (2005). Versatile role of Rab27 in membrane trafficking: focus on the Rab27 effector families. J. Biochem. 137, 916.
  • Fukuda, M. (2006). Distinct Rab27A binding affinities of Slp2-a and Slac2-a/melanophilin: hierarchy of Rab27A effectors. Biochem. Biophys. Res. Commun. 343, 666674.
  • Fukuda, M., and Itoh, T. (2004). Slac2-a/melanophilin contains multiple PEST-like sequences that are highly sensitive to proteolysis. J. Biol. Chem. 279, 2231422321.
  • Fukuda, M., and Kuroda, T.S. (2002). Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin. J. Biol. Chem. 277, 4309643103.
  • Fukuda, M., and Kuroda, T.S. (2004). Missense mutations in the globular tail of myosin-Va in dilute mice partially impair binding of Slac2-a/melanophilin. J. Cell Sci. 117, 583591.
  • Fukuda, M., Kuroda, T.S., and Mikoshiba, K. (2002). Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: implications of a tripartite protein complex for melanosome transport. J. Biol. Chem. 277, 1243212436.
  • Futter, C.E. (2006). The molecular regulation of organelle transport in mammalian retinal pigment epithelial cells. Pigment Cell Res. 19, 104111.
  • Futter, C.E., Ramalho, J.S., Jaissle, G.B., Seeliger, M.W., and Seabra, M.C. (2004). The role of Rab27a in the regulation of melanosome distribution within retinal pigment epithelial cells. Mol. Biol. Cell 15, 22642275.
  • Gaggioli, C., Busca, R., Abbe, P., Ortonne, J.P., and Ballotti, R. (2003). Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Res. 16, 374382.
  • Gazit, R., Aker, M., Elboim, M., Achdout, H., Katz, G., Wolf, D.G., Katzav, S., and Mandelboim, O. (2007). NK cytotoxicity mediated by CD16 but not by NKp30 is functional in Griscelli syndrome. Blood 109, 43064312.
  • Geething, N.C., and Spudich, J.A. (2007). Identification of a minimal myosin Va binding site within an intrinsically unstructured domain of melanophilin. J. Biol. Chem. 282, 2151821528.
  • Geusens, B., Lambert, J., De Smedt, S.C., Buyens, K., Sanders, N.N., and Van Gele, M. (2009). Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. J. Control Release 133, 214220.
  • Gibbs, D., Kitamoto, J., and Williams, D.S. (2003). Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc. Natl. Acad. Sci. U.S.A. 100, 64816486.
  • Gibbs, D., Azarian, S.M., Lillo, C., Kitamoto, J., Klomp, A.E., Steel, K.P., Libby, R.T., and Williams, D.S. (2004). Role of myosin VIIa and Rab27a in the motility and localization of RPE melanosomes. J. Cell Sci. 117, 64736483.
  • Goud, B. (2002). How Rab proteins link motors to membranes. Nat. Cell Biol. 4, E77E78.
  • Halder, R.M., and Nootheti, P.K. (2003). Ethnic skin disorders overview. J. Am. Acad. Dermatol. 48, S143S148.
  • Hara, M., Yaar, M., Byers, H.R., Goukassian, D., Fine, R.E., Gonsalves, J., and Gilchrest, B.A. (2000). Kinesin participates in melanosomal movement along melanocyte dendrites. J. Invest. Dermatol. 114, 438443.
  • Hou, L., and Pavan, W.J. (2008). Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res. 18, 11631176.
  • Huizing, M., Helip-Wooley, A., Westbroek, W., Gunay-Aygun, M., and Gahl, W.A. (2008). Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genomics Hum. Genet. 9, 359386.
  • Hume, A.N., Collinson, L.M., Rapak, A., Gomes, A.Q., Hopkins, C.R., and Seabra, M.C. (2001). Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J. Cell Biol. 152, 795808.
  • Hume, A.N., Collinson, L.M., Hopkins, C.R., Strom, M., Barral, D.C., Bossi, G., Griffiths, G.M., and Seabra, M.C. (2002). The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic 3, 193202.
  • Hume, A.N., Tarafder, A.K., Ramalho, J.S., Sviderskaya, E.V., and Seabra, M.C. (2006). A coiled-coil domain of melanophilin is essential for Myosin Va recruitment and melanosome transport in melanocytes. Mol. Biol. Cell 17, 47204735.
  • Hume, A.N., Ushakov, D.S., Tarafder, A.K., Ferenczi, M.A., and Seabra, M.C. (2007). Rab27a and MyoVa are the primary Mlph interactors regulating melanosome transport in melanocytes. J. Cell Sci. 120, 31113122.
  • Ivanovich, J., Mallory, S., Storer, T., Ciske, D., and Hing, A. (2001). 12-year-old male with Elejalde syndrome (neuroectodermal melanolysosomal disease). Am. J. Med. Genet. 98, 313316.
  • Jordan, M.B., Hildeman, D., Kappler, J., and Marrack, P. (2004). An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 104, 735743.
  • King-Smith, C., Paz, P., Lee, C.W., Lam, W., and Burnside, B. (1997). Bidirectional pigment granule migration in isolated retinal pigment epithelial cells requires actin but not microtubules. Cell Motil. Cytoskeleton 38, 229249.
  • Kuroda, T.S., and Fukuda, M. (2004). Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat. Cell Biol. 6, 11951203.
  • Kuroda, T.S., and Fukuda, M. (2005). Functional analysis of Slac2-c/MyRIP as a linker protein between melanosomes and myosin VIIa. J. Biol. Chem. 280, 2801528022.
  • Kuroda, T.S., Fukuda, M., Ariga, H., and Mikoshiba, K. (2002). The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain. J. Biol. Chem. 277, 92129218.
  • Kuroda, T.S., Ariga, H., and Fukuda, M. (2003). The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes. Mol. Cell. Biol. 23, 52455255.
  • Lambert, J., Naeyaert, J.M., Callens, T., De Paepe, A., and Messiaen, L. (1998a). Human myosin V gene produces different transcripts in a cell type-specific manner. Biochem. Biophys. Res. Commun. 252, 329333.
  • Lambert, J., Onderwater, J., Vander Haeghen, Y., Vancoillie, G., Koerten, H.K., Mommaas, A.M., and Naeyaert, J.M. (1998b). Myosin V colocalizes with melanosomes and subcortical actin bundles not associated with stress fibers in human epidermal melanocytes. J. Invest. Dermatol. 111, 835840.
  • Lambert, J., Naeyaert, J.M., De Paepe, A., Van Coster, R., Ferster, A., Song, M., and Messiaen, L. (2000). arg-cys substitution at codon 1246 of the human myosin Va gene is not associated with Griscelli syndrome. J. Invest. Dermatol. 114, 731733.
  • Langford, G.M. (1999). ER muscles its way around neurons. News Physiol. Sci. 14, 175.
  • Larijani, B., Hume, A.N., Tarafder, A.K., and Seabra, M.C. (2003). Multiple factors contribute to inefficient prenylation of Rab27a in Rab prenylation diseases. J. Biol. Chem. 278, 4679846804.
  • Levy, C., Khaled, M., and Fisher, D.E. (2006). MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12, 406414.
  • Li, X.D., Jung, H.S., Mabuchi, K., Craig, R., and Ikebe, M. (2006). The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor. J. Biol. Chem. 281, 2178921798.
  • Li, X.D., Jung, H.S., Wang, Q., Ikebe, R., Craig, R., and Ikebe, M. (2008). The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va. Proc. Natl. Acad. Sci. U.S.A. 105, 11401145.
  • Liu, X., Ondek, B., and Williams, D.S. (1998). Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker-1 mice. Nat. Genet. 19, 117118.
  • Lopes, V.S., Ramalho, J.S., Owen, D.M., Karl, M.O., Strauss, O., Futter, C.E., and Seabra, M.C. (2007). The ternary Rab27a-Myrip-Myosin VIIa complex regulates melanosome motility in the retinal pigment epithelium. Traffic 8, 486499.
  • Mamishi, S., Modarressi, M.H., Pourakbari, B. et al. (2008). Analysis of RAB27A gene in griscelli syndrome type 2: novel mutations including a deletion hotspot. J. Clin. Immunol. 28, 384389.
  • Masri, A., Bakri, F.G., Al-Hussaini, M., Al-Hadidy, A., Hirzallah, R., De Saint Basile, G., and Hamamy, H. (2008). Griscelli syndrome type 2: a rare and lethal disorder. J. Child Neurol. 23, 964967.
  • Matesic, L.E., Yip, R., Reuss, A.E., Swing, D.A., O’sullivan, T.N., Fletcher, C.F., Copeland, N.G., and Jenkins, N.A. (2001). Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc. Natl. Acad. Sci. U.S.A. 98, 1023810243.
  • Ménasché, G., Pastural, E., Feldmann, J. et al. (2000). Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173176.
  • Ménasché, G., Ho, C.H., Sanal, O., Feldmann, J., Tezcan, I., Ersoy, F., Houdusse, A., Fischer, A., and De Saint Basile, G. (2003a). Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J. Clin. Invest. 112, 450456.
  • Ménasché, G., Feldmann, J., Houdusse, A., Desaymard, C., Fischer, A., Goud, B., and De Saint Basile, G. (2003b). Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients. Blood 101, 27362742.
  • Ménasché, G., Menager, M.M., Lefebvre, J.M. et al. (2008). A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxic granule secretion. Blood 112, 50525062.
  • Mercer, J.A., Seperack, P.K., Strobel, M.C., Copeland, N.G., and Jenkins, N.A. (1991). Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709713.
  • Meschede, I.P., Santos, T.O., Izidoro-Toledo, T.C., Gurgel-Gianetti, J., and Espreafico, E.M. (2008). Griscelli syndrome-type 2 in twin siblings: case report and update on RAB27A human mutations and gene structure. Braz. J. Med. Biol. Res. 41, 839848.
  • Moore, K.J., Swing, D.A., Rinchik, E.M., Mucenski, M.L., Buchberg, A.M., Copeland, N.G., and Jenkins, N.A. (1988). The murine dilute suppressor gene dsu suppresses the coat-color phenotype of three pigment mutations that alter melanocyte morphology, d, ash and ln. Genetics 119, 933941.
  • Nagashima, K., Torii, S., Yi, Z., Igarashi, M., Okamoto, K., Takeuchi, T., and Izumi, T. (2002). Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions. FEBS Lett. 517, 233238.
  • Nascimento, A.A., Amaral, R.G., Bizario, J.C., Larson, R.E., and Espreafico, E.M. (1997). Subcellular localization of myosin-V in the B16 melanoma cells, a wild-type cell line for the dilute gene. Mol. Biol. Cell 8, 19711988.
  • Nascimento, A.A., Roland, J.T., and Gelfand, V.I. (2003). Pigment cells: a model for the study of organelle transport. Annu. Rev. Cell Dev. Biol. 19, 469491.
  • O’sullivan, T.N., Wu, X.S., Rachel, R.A., Huang, J.D., Swing, D.A., Matesic, L.E., Hammer, J.A. III, Copeland, N.G., and Jenkins, N.A. (2004). dsu functions in a MYO5A-independent pathway to suppress the coat color of dilute mice. Proc. Natl. Acad. Sci. U.S.A. 101, 1683116836.
  • Olkkonen, V.M., and Ikonen, E. (2006). When intracellular logistics fails--genetic defects in membrane trafficking. J. Cell Sci. 119, 50315045.
  • Onay, H., Balkan, C., Cogulu, O., Aydinok, Y., Karapinar, D.Y., and Ozkinay, F. (2008). A further Turkish case of Griscelli syndrome with new RAB27A mutation. J. Am. Acad. Dermatol. 58, S115S116.
  • Pachlopnik Schmid, J., Ho, C.H., Diana, J., Pivert, G., Lehuen, A., Geissmann, F., Fischer, A., and De Saint Basile, G. (2008). A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH). Eur. J. Immunol. 38, 32193225.
  • Passeron, T., Bahadoran, P., Bertolotto, C., Chiaverini, C., Busca, R., Valony, G., Bille, K., Ortonne, J.P., and Ballotti, R. (2004). Cyclic AMP promotes a peripheral distribution of melanosomes and stimulates melanophilin/Slac2-a and actin association. FASEB J. 18, 989991.
  • Pastural, E., Barrat, F.J., Dufourcq-Lagelouse, R., Certain, S., Sanal, O., Jabado, N., Seger, R., Griscelli, C., Fischer, A., and De Saint Basile, G. (1997). Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat. Genet. 16, 289292.
  • Pastural, E., Ersoy, F., Yalman, N. et al. (2000). Two genes are responsible for Griscelli syndrome at the same 15q21 locus. Genomics 63, 299306.
  • Pereira-Leal, J.B., and Seabra, M.C. (2000). The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J. Mol. Biol. 301, 10771087.
  • Provance, D.W., James, T.L., and Mercer, J.A. (2002). Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes. Traffic 3, 124132.
  • Rajadhyax, M., Neti, G., Crow, Y., and Tyagi, A. (2007). Neurological presentation of Griscelli syndrome: obstructive hydrocephalus without haematological abnormalities or organomegaly. Brain Dev. 29, 247250.
  • Ramalho, J.S., Tolmachova, T., Hume, A.N., Mcguigan, A., Gregory-Evans, C.Y., Huxley, C., and Seabra, M.C. (2001). Chromosomal mapping, gene structure and characterization of the human and murine RAB27B gene. BMC Genet. 2, 2.
  • Raposo, G., and Marks, M.S. (2007). Melanosomes – dark organelles enlighten endosomal membrane transport. Nat. Rev. Mol. Cell Biol. 8, 786797.
  • Rigopoulos, D., Gregoriou, S., and Katsambas, A. (2007). Hyperpigmentation and melasma. J. Cosmet. Dermatol. 6, 195202.
  • Sanal, O., Ersoy, F., Tezcan, I., Metin, A., Yel, L., Menasche, G., Gurgey, A., Berkel, I., and De Saint Basile, G. (2002). Griscelli disease: genotype-phenotype correlation in an array of clinical heterogeneity. J. Clin. Immunol. 22, 237243.
  • Sarper, N., Ipek, I.O., Ceran, O., Karaman, S., Bozaykut, A., and Inan, S. (2003). A rare syndrome in the differential diagnosis of hepatosplenomegaly and pancytopenia: report of identical twins with Griscelli disease. Ann. Trop. Paediatr. 23, 6973.
  • Sato, O., Li, X.D., and Ikebe, M. (2007). Myosin Va becomes a low duty ratio motor in the inhibited form. J. Biol. Chem. 282, 1322813239.
  • Schuster, F., Stachel, D.K., Schmid, I., Baumeister, F.A., Graubner, U.B., Weiss, M., Haas, R.J., and Belohradsky, B.H. (2001). Griscelli syndrome: report of the first peripheral blood stem cell transplant and the role of mutations in the RAB27A gene as an indication for BMT. Bone Marrow Transplant. 28, 409412.
  • Seabra, M.C., and Wasmeier, C. (2004). Controlling the location and activation of Rab GTPases. Curr. Opin. Cell Biol. 16, 451457.
  • Seabra, M.C., Mules, E.H., and Hume, A.N. (2002). Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 8, 2330.
  • Sheela, S.R., Latha, M., and Injody, S.J. (2004). Griscelli syndrome: Rab 27a mutation. Indian Pediatr. 41, 944947.
  • Solano, F., Briganti, S., Picardo, M., and Ghanem, G. (2006). Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19, 550571.
  • Strom, M., Hume, A.N., Tarafder, A.K., Barkagianni, E., and Seabra, M.C. (2002). A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J. Biol. Chem. 277, 2542325430.
  • Takagishi, Y., and Murata, Y. (2006). Myosin Va mutation in rats is an animal model for the human hereditary neurological disease, Griscelli syndrome type 1. Ann. N. Y. Acad. Sci. 1086, 6680.
  • Takagishi, Y., Oda, S., Hayasaka, S., Dekker-Ohno, K., Shikata, T., Inouye, M., and Yamamura, H. (1996). The dilute-lethal (dl) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci. Lett. 215, 169172.
  • Taylor, K.A. (2007). Regulation and recycling of myosin V. Curr. Opin. Cell Biol. 19, 6774.
  • Trybus, K.M. (2008). Myosin V from head to tail. CMLS, Cell. Mol. Life Sci. 65, 13781389.
  • Van Den Bossche, K., Naeyaert, J.M., and Lambert, J. (2006). The quest for the mechanism of melanin transfer. Traffic 7, 769778.
  • Van Gele, M., Geusens, B., Schmitt, A.M., Aguilar, L., and Lambert, J. (2008). Knockdown of myosin Va isoforms by RNAi as a tool to block melanosome transport in primary human melanocytes. J. Invest. Dermatol. 128, 24742484.
  • Vancoillie, G., Lambert, J., Mulder, A., Koerten, H.K., Mommaas, A.M., Van Oostveldt, P., and Naeyaert, J.M. (2000a). Cytoplasmic dynein colocalizes with melanosomes in normal human melanocytes. Br. J. Dermatol. 143, 298306.
  • Vancoillie, G., Lambert, J., Mulder, A., Koerten, H.K., Mommaas, A.M., Van Oostveldt, P., and Naeyaert, J.M. (2000b). Kinesin and kinectin can associate with the melanosomal surface and form a link with microtubules in normal human melanocytes. J. Invest. Dermatol. 114, 421429.
  • Vaughan, K.T. (2005). TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J. Cell Biol. 171, 197200.
  • Westbroek, W., Lambert, J., and Naeyaert, J.M. (2001). The dilute locus and Griscelli syndrome: gateways towards a better understanding of melanosome transport. Pigment Cell Res. 14, 320327.
  • Westbroek, W., Lambert, J., Bahadoran, P., Busca, R., Herteleer, M.C., Smit, N., Mommaas, M., Ballotti, R., and Naeyaert, J.M. (2003). Interactions of human Myosin Va isoforms, endogenously expressed in human melanocytes, are tightly regulated by the tail domain. J. Invest. Dermatol. 120, 465475.
  • Westbroek, W., Lambert, J., De Schepper, S., Kleta, R., Van Den Bossche, K., Seabra, M.C., Huizing, M., Mommaas, M., and Naeyaert, J.M. (2004). Rab27b is up-regulated in human Griscelli syndrome type II melanocytes and linked to the actin cytoskeleton via exon F-Myosin Va transcripts. Pigment Cell Res. 17, 498505.
  • Westbroek, W., Tuchman, M., Tinloy, B. et al. (2008). A novel missense mutation (G43S) in the switch I region of Rab27A causing Griscelli syndrome. Mol. Genet. Metab. 94, 248254.
  • Wilson, S.M., Yip, R., Swing, D.A., O’sullivan, T.N., Zhang, Y., Novak, E.K., Swank, R.T., Russell, L.B., Copeland, N.G., and Jenkins, N.A. (2000). A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl. Acad. Sci. U.S.A. 97, 79337938.
  • Wu, X., Bowers, B., Wei, Q., Kocher, B., and Hammer, J.A. III (1997). Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. J. Cell Sci. 110 (Pt 7), 847859.
  • Wu, X., Rao, K., Bowers, M.B., Copeland, N.G., Jenkins, N.A., and Hammer, J.A. III (2001). Rab27a enables myosin Va-dependent melanosome capture by recruiting the myosin to the organelle. J. Cell Sci. 114, 10911100.
  • Wu, X.S., Rao, K., Zhang, H., Wang, F., Sellers, J.R., Matesic, L.E., Copeland, N.G., Jenkins, N.A., and Hammer, J.A. III (2002a). Identification of an organelle receptor for myosin-Va. Nat. Cell Biol. 4, 271278.
  • Wu, X., Wang, F., Rao, K., Sellers, J.R., and Hammer, J.A. III (2002b). Rab27a is an essential component of melanosome receptor for myosin Va. Mol. Biol. Cell 13, 17351749.
  • Wu, X.S., Tsan, G.L., and Hammer, J.A. III (2005). Melanophilin and myosin Va track the microtubule plus end on EB1. J. Cell Biol. 171, 201207.
  • Wu, X., Sakamoto, T., Zhang, F., Sellers, J.R., and Hammer, J.A. III (2006). In vitro reconstitution of a transport complex containing Rab27a, melanophilin and myosin Va. FEBS Lett. 580, 58635868.
  • Zur Stadt, U., Beutel, K., Kolberg, S., Schneppenheim, R., Kabisch, H., Janka, G., and Hennies, H.C. (2006). Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum. Mutat. 27, 6268.