SEARCH

SEARCH BY CITATION

References

  • Ai, X., Do, A.T., Kusche-Gullberg, M., Lindahl, U., Lu, K., and Emerson, C.P. Jr (2006). Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2. J. Biol. Chem. 281, 49694976.
  • Akbarzadeh, S., Wheldon, L.M., Sweet, S.M., Talma, S., Mardakheh, F.K., and Heath, J.K. (2008). The deleted in brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src. PLoS ONE 3, e1873.
  • Arheden, K., Mandahl, N., Strombeck, B., Isaksson, M., and Mitelman, F. (1988a). Chromosome localization of the human oncogene INT1 to 12q13 by in situ hybridization. Cytogenet. Cell Genet. 47, 8687.
  • Arheden, K., Tommerup, N., Mandahl, N. et al. (1988b). Amplification of the human putative oncogene INT1 in primary retinoblastoma tumors. Cytogenet. Cell Genet. 48, 174177.
  • Bachmann, I.M., Straume, O., Puntervoll, H.E., Kalvenes, M.B., and Akslen, L.A. (2005). Importance of P-cadherin, β-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin. Cancer Res. 11, 86068614.
  • Badiglian Filho, L., Oshima, C.T., De Oliveira Lima, F., De Oliveira Costa, H., De Sousa Damiao, R., Gomes, T.S., and Goncalves, W.J. (2009). Canonical and noncanonical Wnt pathway: a comparison among normal ovary, benign ovarian tumor and ovarian cancer. Oncol. Rep. 21, 313320.
  • Baeg, G.H., Lin, X., Khare, N., Baumgartner, S., and Perrimon, N. (2001). Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 8794.
  • Banziger, C., Soldini, D., Schutt, C., Zipperlen, P., Hausmann, G., and Basler, K. (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509522.
  • Bartscherer, K., Pelte, N., Ingelfinger, D., and Boutros, M. (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523533.
  • Bellei, B., Flori, E., Izzo, E., Maresca, V., and Picardo, M. (2008). GSK3beta inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes. Cell. Signal. 20, 17501761.
  • Benhaj, K., Akcali, K.C., and Ozturk, M. (2006). Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol. Rep. 15, 701707.
  • Billiard, J., Way, D.S., Seestaller-Wehr, L.M., Moran, R.A., Mangine, A., and Bodine, P.V. (2005). The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Mol. Endocrinol. 19, 90101.
  • Bittner, M., Meltzer, P., Chen, Y. et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536540.
  • Blasband, A., Schryver, B., and Papkoff, J. (1992). The biochemical properties and transforming potential of human Wnt-2 are similar to Wnt-1. Oncogene 7, 153161.
  • Boyer, A., Paquet, M., Lague, M.N., Hermo, L., and Boerboom, D. (2009). Dysregulation of WNT/CTNNB1 and PI3K/AKT signaling in testicular stromal cells causes granulosa cell tumor of the testis. Carcinogenesis 30, 869878.
  • Cardones, A.R., Murakami, T., and Hwang, S.T. (2003). CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin. Cancer Res. 63, 67516757.
  • Carroll, T.J., Wallingford, J.B., and Vize, P.D. (1999). Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. Dev. Genet. 24, 199207.
  • Casagrande, G., Te Kronnie, G., and Basso, G. (2006). The effects of siRNA-mediated inhibition of E2A-PBX1 on EB-1 and Wnt16b expression in the 697 pre-B leukemia cell line. Haematologica 91, 765771.
  • Chen, K., Fallen, S., Abaan, H.O. et al. (2008). Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival. Pediatr. Blood Cancer 51, 349355.
  • Chien, A.J., Conrad, W.H., and Moon, R.T. (2009a). A Wnt survival guide: from flies to human disease. J. Invest. Dermatol. 129, 16141627.
  • Chien, A.J., Moore, E.C., Lonsdorf, A.S. et al. (2009b). Activated Wnt/β-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl. Acad. Sci. USA 106, 11931198.
  • Da Forno, P.D., Pringle, J.H., Hutchinson, P., et al. (2008). WNT5A expression increases during melanoma progression and correlates with outcome. Clin Cancer Res. 14, 58255832.
  • Dejmek, J., Dib, K., Jonsson, M., and Andersson, T. (2003). Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int. J. Cancer 103, 344351.
  • Delehedde, M., Lyon, M., Sergeant, N., Rahmoune, H., and Fernig, D.G. (2001). Proteoglycans: pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. J. Mammary Gland Biol. Neoplasia 6, 253273.
  • Delmas, V., Beermann, F., Martinozzi, S. et al. (2007). Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 29232935.
  • Dennis, J.U., Dean, N.M., Bennett, C.F., Griffith, J.W., Lang, C.M., and Welch, D.R. (1998). Human melanoma metastasis is inhibited following ex vivo treatment with an antisense oligonucleotide to protein kinase C-alpha. Cancer Lett. 128, 6570.
  • Dhoot, G.K., Gustafsson, M.K., Ai, X., Sun, W., Standiford, D.M., and Emerson, C.P. Jr. (2001). Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293, 16631666.
  • Dissanayake, S.K., Wade, M., Johnson, C.E. et al. (2007). The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem. 282, 1725917271.
  • Dissanayake, S.K., Olkhanud, P.B., O’Connell, M.P. et al. (2008). Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation. Cancer Res. 68, 1020510214.
  • Dong, J., Phelps, R.G., Qiao, R. et al. (2003). BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 63, 38833885.
  • Dorsky, R.I., Moon, R.T., and Raible, D.W. (1998). Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370373.
  • Dunn, K.J., Williams, B.O., Li, Y., and Pavan, W.J. (2000). Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc. Natl. Acad. Sci. USA 97, 1005010055.
  • Dunn, K.J., Brady, M., Ochsenbauer-Jambor, C., Snyder, S., Incao, A., and Pavan, W.J. (2005). WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action. Pigment Cell Res. 18, 167180.
  • Endo, Y., Beauchamp, E., Woods, D., Taylor, W.G., Toretsky, J.A., Uren, A., and Rubin, J.S. (2008). Wnt-3a and Dickkopf-1 stimulate neurite outgrowth in Ewing tumor cells via a Frizzled3- and c-Jun N-terminal kinase-dependent mechanism. Mol. Cell. Biol. 28, 23682379.
  • Fang, D., Leishear, K., Nguyen, T.K. et al. (2006). Defining the conditions for the generation of melanocytes from human embryonic stem cells. Stem Cells 24, 16681677.
  • Filmus, J., Capurro, M., and Rast, J. (2008). Glypicans. Genome Biol. 9, 224.
  • Ford, C.E., Ekstrom, E.J., and Andersson, T. (2009a). Wnt-5a signaling restores tamoxifen sensitivity in estrogen receptor-negative breast cancer cells. Proc. Natl. Acad. Sci. USA 106, 39193924.
  • Ford, C.E., Ekstrom, E.J., Howlin, J., and Andersson, T. (2009b). The WNT-5a derived peptide, Foxy-5, possesses dual properties that impair progression of ERalpha negative breast cancer. Cell Cycle 8, 18381842.
  • Fukukawa, C., Nagayama, S., Tsunoda, T., Toguchida, J., Nakamura, Y., and Katagiri, T. (2009). Activation of the non-canonical Dvl-Rac1-JNK pathway by Frizzled homologue 10 in human synovial sarcoma. Oncogene 28, 11101120.
  • Ghosh, M.C., Collins, G.D., Vandanmagsar, B. et al. (2009). Activation of Wnt5A signaling is required for CXCL12-mediated T-cell migration. Blood 114, 13661373.
  • Golan, T., Yaniv, A., Bafico, A., Liu, G., and Gazit, A. (2004). The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt. β-catenin signaling cascade. J. Biol. Chem. 279, 1487914888.
  • Goodman, R.M., Thombre, S., Firtina, Z. et al. (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 49014911.
  • Hamada, S., Watanabe, K., Hirota, M. et al. (2007). β-Catenin/TCF/LEF regulate expression of the short form human Cripto-1. Biochem. Biophys. Res. Commun. 355, 240244.
  • Heasley, L.E., and Winn, R.A. (2008). Analysis of Wnt7a-stimulated JNK activity and cJun phosphorylation in non-small cell lung cancer cells. Methods Mol. Biol. 468, 187196.
  • Herlyn, M., Berking, C., Li, G., and Satyamoorthy, K. (2000). Lessons from melanocyte development for understanding the biological events in naevus and melanoma formation. Melanoma Res. 10, 303312.
  • Hoek, K.S., Schlegel, N.C., Brafford, P. et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 19, 290302.
  • Hoek, K.S., Eichhoff, O.M., Schlegel, N.C. et al. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 68, 650656.
  • Howe, C.L., Valletta, J.S., Rusnak, A.S., and Mobley, W.C. (2001). NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32, 801814.
  • Hsu, M.Y., Rovinsky, S., Penmatcha, S., Herlyn, M., and Muirhead, D. (2005). Bone morphogenetic proteins in melanoma: angel or devil? Cancer Metastasis Rev. 24, 251263.
  • James, R.G., Biechele, T.L., Conrad, W.H. et al. (2009). Bruton’s tyrosine kinase revealed as a negative regulator of Wnt-β-catenin signaling. Sci. Signal. 2, ra25.
  • Jeays-Ward, K., Hoyle, C., Brennan, J., Dandonneau, M., Alldus, G., Capel, B., and Swain, A. (2003). Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130, 36633670.
  • Jezewski, P.A., Fang, P.K., Payne-Ferreira, T.L., and Yelick, P.C. (2008). Zebrafish Wnt9b synteny and expression during first and second arch, heart, and pectoral fin bud morphogenesis. Zebrafish 5, 169177.
  • Jonsson, M., and Andersson, T. (2001). Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J. Cell Sci. 114, 20432053.
  • Jonsson, M., Smith, K., and Harris, A.L. (1998). Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton. Br. J. Cancer 78, 430438.
  • Jonsson, M., Dejmek, J., Bendahl, P.O., and Andersson, T. (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res. 62, 409416.
  • Juriloff, D.M., Harris, M.J., Mcmahon, A.P., Carroll, T.J., and Lidral, A.C. (2006). Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Res. A Clin. Mol. Teratol. 76, 574579.
  • Kani, S., Oishi, I., Yamamoto, H. et al. (2004). The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iepsilon. J. Biol. Chem. 279, 5010250109.
  • Kashani-Sabet, M., Rangel, J., Torabian, S., et al. (2009). A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc. Natl. Acad. Sci. U S A. 106, 62686272.
  • Katoh, M. (2005). WNT/PCP signaling pathway and human cancer (review). Oncol. Rep. 14, 15831588.
  • Katoh, M., Hirai, M., Sugimura, T., and Terada, M. (1996). Cloning, expression and chromosomal localization of Wnt-13, a novel member of the Wnt gene family. Oncogene 13, 873876.
  • Khan, N.I., Bradstock, K.F., and Bendall, L.J. (2007). Activation of Wnt/β-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br. J. Haematol. 138, 338348.
  • Klein, D., Demory, A., Peyre, F. et al. (2009). Wnt2 acts as an angiogenic growth factor for non-sinusoidal endothelial cells and inhibits expression of stanniocalcin-1. Angiogenesis doi: DOI: 10.1007/s10456-009-9145-5.
  • Kremenevskaja, N., Von Wasielewski, R., Rao, A.S., Schofl, C., Andersson, T., and Brabant, G. (2005). Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene 24, 21442154.
  • Kuhl, M., Sheldahl, L.C., Malbon, C.C., and Moon, R.T. (2000a). Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275, 1270112711.
  • Kuhl, M., Sheldahl, L.C., Park, M., Miller, J.R., and Moon, R.T. (2000b). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16, 279283.
  • Kuphal, S., Palm, H.G., Poser, I., and Bosserhoff, A.K. (2005). Snail-regulated genes in malignant melanoma. Melanoma Res. 15, 305313.
  • Labonne, C., and Bronner-Fraser, M. (1998). Neural crest induction in Xenopus: evidence for a two-signal model. Development 125, 24032414.
  • Lang, D., Lu, M.M., Huang, L. et al. (2005). Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433, 884887.
  • Larue, L., and Delmas, V. (2006). The WNT/Β-catenin pathway in melanoma. Front. Biosci. 11, 733742.
  • Larue, L., Luciani, F., Kumasaka, M., Champeval, D., Demirkan, N., Bonaventure, J., and Delmas, V. (2009) Bypassing melanocyte senescence by β-catenin: a novel way to promote melanoma. Pathol. Biol. (Paris) doi: DOI: 10.1016/j.patbio.2008.11.003.
  • Lavery, D.L., Martin, J., Turnbull, Y.D., and Hoppler, S. (2008). Wnt6 signaling regulates heart muscle development during organogenesis. Dev. Biol. 323, 177188.
  • Le Grand, F., Jones, A.E., Seale, V., Scime, A., and Rudnicki, M.A. (2009). Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4, 535547.
  • Legg, J.W., Lewis, C.A., Parsons, M., Ng, T., and Isacke, C.M. (2002). A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nat. Cell Biol. 4, 399407.
  • Li, Y., and Bu, G. (2005). LRP5/6 in Wnt signaling and tumorigenesis. Future Oncol. 1, 673681.
  • Li, C., Chen, H., Hu, L. et al. (2008). Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with FZD2. BMC Mol. Biol. 9, 11.
  • Lin, X., and Perrimon, N. (2000). Role of heparan sulfate proteoglycans in cell-cell signaling in Drosophila. Matrix Biol. 19, 303307.
  • Lin, Y.C., You, L., Xu, Z. et al. (2007). Wnt inhibitory factor-1 gene transfer inhibits melanoma cell growth. Hum. Gene Ther. 18, 379386.
  • Liu, Y., Bhat, R.A., Seestaller-Wehr, L.M. et al. (2007). The orphan receptor tyrosine kinase Ror2 promotes osteoblast differentiation and enhances ex vivo bone formation. Mol. Endocrinol. 21, 376387.
  • Lopes, C.C., Dietrich, C.P., and Nader, H.B. (2006). Specific structural features of syndecans and heparan sulfate chains are needed for cell signaling. Braz. J. Med. Biol. Res. 39, 157167.
  • Macleod, R.J., Hayes, M., and Pacheco, I. (2007). Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G403G411.
  • Mangioni, S., Vigano, P., Lattuada, D., Abbiati, A., Vignali, M., and Di Blasio, A.M. (2005). Overexpression of the Wnt5b gene in leiomyoma cells: implications for a role of the Wnt signaling pathway in the uterine benign tumor. J. Clin. Endocrinol. Metab. 90, 53495355.
  • Mapelli, E., Banfi, P., Sala, E., Sensi, M., Supino, R., Zunino, F., and Gambetta, R.A. (1994). Effect of protein kinase C inhibitors on invasiveness of human melanoma clones expressing different levels of protein kinase C isoenzymes. Int. J. Cancer 57, 281286.
  • Martinez, G., Wijesinghe, M., Turner, K.N. et al. (2009). Conditional mutations of β-catenin and APC reveal roles for canonical Wnt signaling in lens differentiation. Invest. Ophthalmol. Vis. Sci. doi: DOI: 10.1167/iovs.09-3567.
  • Matsumoto, K., Miki, R., Nakayama, M., Tatsumi, N., and Yokouchi, Y. (2008). Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium. Dev. Biol. 319, 234247. In Press.
  • Mazieres, J., You, L., He, B. et al. (2005). Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t(1;19) translocation induces apoptosis. Oncogene 24, 53965400.
  • Melchior, K., Weiss, J., Zaehres, H. et al. (2008). The WNT receptor FZD7 contributes to self-renewal signaling of human embryonic stem cells. Biol. Chem. 389, 897903.
  • Mikels, A.J., and Nusse, R. (2006). Purified Wnt5a protein activates or inhibits β-catenin-TCF signaling depending on receptor context. PLoS Biol. 4, e115.
  • Miyakoshi, T., Takei, M., Kajiya, H., Egashira, N., Takekoshi, S., Teramoto, A., and Osamura, R.Y. (2008). Expression of Wnt4 in human pituitary adenomas regulates activation of the β-catenin-independent pathway. Endocr. Pathol. 19, 261273.
  • Morioka, K., Tanikawa, C., Ochi, K. et al. (2009). Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci. 100, 12271233.
  • Morkel, M., Huelsken, J., Wakamiya, M. et al. (2003). β-Catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development 130, 62836294.
  • Nakamura, T., and Matsumoto, K. (2008). The functions and possible significance of Kremen as the gatekeeper of Wnt signalling in development and pathology. J. Cell Mol. Med. 12, 391408.
  • Nakamura, K., Yoshikawa, N., Yamaguchi, Y., Kagota, S., Shinozuka, K., and Kunitomo, M. (2003). Effect of PKC412, an inhibitor of protein kinase C, on spontaneous metastatic model mice. Anticancer Res. 23, 13951399.
  • Nawaz, S., Klar, J., Wajid, M. et al. (2009). WNT10A missense mutation associated with a complete Odonto-Onycho-Dermal Dysplasia syndrome. Eur. J. Hum. Genet. doi: DOI: 10.1038/ejhg.2009.81.
  • Nemeth, M.J., Topol, L., Anderson, S.M., Yang, Y., and Bodine, D.M. (2007). Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc. Natl. Acad. Sci. USA 104, 1543615441.
  • Nishikawa, S., and Osawa, M. (2007). Generating quiescent stem cells. Pigment Cell Res. 20, 263270.
  • Nishita, M., Yoo, S.K., Nomachi, A. et al. (2006). Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J. Cell Biol. 175, 555562.
  • Nomachi, A., Nishita, M., Inaba, D., Enomoto, M., Hamasaki, M., and Minami, Y. (2008). Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein Filamin A. J. Biol. Chem. 283, 2797327981.
  • Nyormoi, O., and Bar-Eli, M. (2003). Transcriptional regulation of metastasis-related genes in human melanoma. Clin. Exp. Metastasis 20, 251263.
  • O’Connell, M.P., French, A.D., Leotlela, P.D., and Weeraratna, A.T. (2008). Assaying Wnt5A-mediated invasion in melanoma cells. Methods Mol. Biol. 468, 243253.
  • O’Connell, M.P., Fiori, J.L., Baugher, K.M. et al. (2009a). Wnt5A activates the calpain-mediated cleavage of Filamin A. J. Invest. Dermatol. 129, 17821789.
  • O’Connell, M.P., Fiori, J.L., Kershner, E.K., et al. (2009b). HSPG modulation of WNT5A signal transduction in metastatic melanoma cells. J. Biol. Chem. doi:DOI: 10.1074/jbc.M109.028498.
  • O’Connell, M.P., Fiori, J.L., Xu, M., et al. (2009c). The Orphan Tyrosine Kinase Receptor, ROR2, Mediates Wnt5A Signaling in Metastatic Melanoma. Oncogene doi: DOI: 10.1038/onc.2009.305.
  • Oishi, I., Suzuki, H., Onishi, N. et al. (2003). The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645654.
  • Okuyama, R., Tagami, H., and Aiba, S. (2008). Notch signaling: its role in epidermal homeostasis and in the pathogenesis of skin diseases. J. Dermatol. Sci. 49, 187194.
  • Ordway, J.M., Bedell, J.A., Citek, R.W. et al. (2006). Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis 27, 24092423.
  • Park, J.K., Song, J.H., He, T.C., Nam, S.W., Lee, J.Y., and Park, W.S. (2009). Overexpression of Wnt-2 in colorectal cancers. Neoplasma 56, 119123.
  • Parri, M., Taddei, M.L., Bianchini, F., Calorini, L., and Chiarugi, P. (2009). EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res. 69, 20722081.
  • Pfeiffer, S., Ricardo, S., Manneville, J.B., Alexandre, C., and Vincent, J.P. (2002). Producing cells retain and recycle Wingless in Drosophila embryos. Curr. Biol. 12, 957962.
  • Pham, K., Milovanovic, T., Barr, R.J., Truong, T., and Holcombe, R.F. (2003). Wnt ligand expression in malignant melanoma: pilot study indicating correlation with histopathological features. Mol. Pathol. 56, 280285.
  • Planutis, K., Planutiene, M., Moyer, M.P., Nguyen, A.V., Perez, C.A., and Holcombe, R.F. (2007). Regulation of norrin receptor frizzled-4 by Wnt2 in colon-derived cells. BMC Cell Biol. 8, 12.
  • Pollock, P.M., Harper, U.L., Hansen, K.S. et al. (2003). High frequency of BRAF mutations in nevi. Nat. Genet. 33, 1920.
  • Pons, M., and Quintanilla, M. (2006). Molecular biology of malignant melanoma and other cutaneous tumors. Clin. Transl. Oncol. 8, 466474.
  • Rajagopal, J., Carroll, T.J., Guseh, J.S. et al. (2008). Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development 135, 16251634.
  • Rankin, J., Strachan, T., Lako, M., and Lindsay, S. (1999). Partial cloning and assignment of WNT6 to human chromosome band 2q35 by in situ hybridization. Cytogenet. Cell Genet. 84, 5052.
  • Rebhun, R.B., Lazar, A.J., Fidler, I.J., and Gershenwald, J.E. (2008). Impact of sentinel lymphadenectomy on survival in a murine model of melanoma. Clin. Exp. Metastasis 25, 191199.
  • Rhee, C.S., Sen, M., Lu, D. et al. (2002). Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene 21, 65986605.
  • Riddle, R.D., Ensini, M., Nelson, C., Tsuchida, T., Jessell, T.M., and Tabin, C. (1995). Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631640.
  • Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., and Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649657.
  • Rimm, D.L., Caca, K., Hu, G., Harrison, F.B., and Fearon, E.R. (1999). Frequent nuclear/cytoplasmic localization of β-catenin without exon 3 mutations in malignant melanoma. Am. J. Pathol. 154, 325329.
  • Robledo, M.M., Bartolome, R.A., Longo, N. et al. (2001). Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J. Biol. Chem. 276, 4509845105.
  • Roelink, H., Wang, J., Black, D.M., Solomon, E., and Nusse, R. (1993). Molecular cloning and chromosomal localization to 17q21 of the human WNT3 gene. Genomics 17, 790792.
  • Rotolo, S., Diotti, R., Gordon, R.E. et al. (2005). Effects on proliferation and melanogenesis by inhibition of mutant BRAF and expression of wild-type INK4A in melanoma cells. Int. J. Cancer 115, 164169.
  • Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, E., and Polakis, P. (1997). Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 17901792.
  • Safholm, A., Tuomela, J., Rosenkvist, J., Dejmek, J., Harkonen, P., and Andersson, T. (2008). The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin. Cancer Res. 14, 65566563.
  • Saitoh, T., and Katoh, M. (2001). Molecular cloning and characterization of human WNT5B on chromosome 12p13.3 region. Int. J. Oncol. 19, 347351.
  • Saitoh, T., and Katoh, M. (2002). Expression and regulation of WNT5A and WNT5B in human cancer: up-regulation of WNT5A by TNFalpha in MKN45 cells and up-regulation of WNT5B by β-estradiol in MCF-7 cells. Int. J. Mol. Med. 10, 345349.
  • Saitoh, A., Hansen, L.A., Vogel, J.C., and Udey, M.C. (1998). Characterization of Wnt gene expression in murine skin: possible involvement of epidermis-derived Wnt-4 in cutaneous epithelial-mesenchymal interactions. Exp. Cell Res. 243, 150160.
  • Sakai, D., Tanaka, Y., Endo, Y., Osumi, N., Okamoto, H., and Wakamatsu, Y. (2005). Regulation of Slug transcription in embryonic ectoderm by β-catenin-Lef/Tcf and BMP-Smad signaling. Dev. Growth Differ. 47, 471482.
  • Saldanha, J., Singh, J., and Mahadevan, D. (1998). Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases. Protein Sci. 7, 16321635.
  • Schmidt, C., Mcgonnell, I., Allen, S., and Patel, K. (2008). The role of Wnt signalling in the development of somites and neural crest. Adv. Anat. Embryol. Cell Biol. 195, 164.
  • Schulte, G., and Bryja, V. (2007). The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 518525.
  • Schwartz, A.L., Malgor, R., Dickerson, E., et al. (2009). Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin. Cancer Res. 15, 41144122.
  • Sen, M., Chamorro, M., Reifert, J., Corr, M., and Carson, D.A. (2001). Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum. 44, 772781.
  • Shah, B.H., Shah, F.B., and Catt, K.J. (2006). Role of metalloproteinase-dependent EGF receptor activation in alpha-adrenoceptor-stimulated MAP kinase phosphorylation in GT1-7 neurons. J. Neurochem. 96, 520532.
  • Shibahara, S., Takeda, K., Yasumoto, K., Udono, T., Watanabe, K., Saito, H., and Takahashi, K. (2001). Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J. Investig. Dermatol. Symp. Proc. 6, 99104.
  • Swiatek, W., Tsai, I.C., Klimowski, L., Pepler, A., Barnette, J., Yost, H.J., and Virshup, D.M. (2004). Regulation of casein kinase I epsilon activity by Wnt signaling. J. Biol. Chem. 279, 1301113017.
  • Takahashi, Y., Nishikawa, M., Suehara, T., Takiguchi, N., and Takakura, Y. (2008). Gene silencing of β-catenin in melanoma cells retards their growth but promotes the formation of pulmonary metastasis in mice. Int. J. Cancer 123, 23152320.
  • Takeda, K., Yasumoto, K., Takada, R. et al. (2000). Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem. 275, 1401314016.
  • Taki, M., Kamata, N., Yokoyama, K., Fujimoto, R., Tsutsumi, S., and Nagayama, M. (2003). Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci. 94, 593597.
  • Topol, L., Jiang, X., Choi, H., Garrett-Beal, L., Carolan, P.J., and Yang, Y. (2003). Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J. Cell Biol. 162, 899908.
  • Ulrich, F., Krieg, M., Schotz, E.M. et al. (2005). Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 9, 555564.
  • Ungar, A.R., Kelly, G.M., and Moon, R.T. (1995). Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo. Mech. Dev. 52, 153164.
  • Voronkov, A.E., Baskin, I.I., Palyulin, V.A., and Zefirov, N.S. (2008). Molecular model of the Wnt protein binding site on the surface of dimeric CRD domain of the hFZD8 receptor. Dokl. Biochem. Biophys. 419, 7578.
  • Wai, D.H., Schaefer, K.L., Schramm, A. et al. (2002). Expression analysis of pediatric solid tumor cell lines using oligonucleotide microarrays. Int. J. Oncol. 20, 441451.
  • Wainwright, B.J., Scambler, P.J., Stanier, P. et al. (1988). Isolation of a human gene with protein sequence similarity to human and murine int-1 and the Drosophila segment polarity mutant wingless. EMBO J. 7, 17431748.
  • Weeraratna, A.T. (2005). A Wnt-er wonderland–the complexity of Wnt signaling in melanoma. Cancer Metastasis Rev. 24, 237250.
  • Weeraratna, A.T., Arnold, J.T., George, D.J., Demarzo, A., and Isaacs, J.T. (2000). Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45, 140148.
  • Weeraratna, A.T., Becker, D., Carr, K.M., et al. (2004). Generation and analysis of melanoma SAGE libraries: SAGE advice on the melanoma transcriptome. Oncogene 23, 22642274.
  • Weeraratna, A.T., Dalrymple, S.L., Lamb, J.C., Denmeade, S.R., Miknyoczki, S., Dionne, C.A., and Isaacs, J.T. (2001). Pan-trk inhibition decreases metastasis and enhances host survival in experimental models as a result of its selective induction of apoptosis of prostate cancer cells. Clin. Cancer Res. 7, 22372245.
  • Weeraratna, A.T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., and Trent, J.M. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279288.
  • Westfall, T.A., Brimeyer, R., Twedt, J., Gladon, J., Olberding, A., Furutani-Seiki, M., and Slusarski, D.C. (2003). Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity. J. Cell Biol. 162, 889898.
  • Wilson, C., Goberdhan, D.C., and Steller, H. (1993). Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases. Proc. Natl. Acad. Sci. USA 90, 71097113.
  • Witze, E.S., Litman, E.S., Argast, G.M., Moon, R.T., and Ahn, N.G. (2008). Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science 320, 365369.
  • Wolda, S.L., and Moon, R.T. (1992). Cloning and developmental expression in Xenopus laevis of seven additional members of the Wnt family. Oncogene 7, 19411947.
  • Worm, J., Christensen, C., Gronbaek, K., Tulchinsky, E., and Guldberg, P. (2004). Genetic and epigenetic alterations of the APC gene in malignant melanoma. Oncogene 23, 52155226.
  • Xiao, C., Yang, B.F., Song, J.H., Schulman, H., Li, L., and Hao, C. (2005). Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp. Cell Res. 304, 244255.
  • Yamaguchi, Y., Passeron, T., Hoashi, T. et al. (2008). Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/β-catenin signaling in keratinocytes. FASEB J. 22, 10091020.
  • Yokoyama, K., Kamata, N., Fujimoto, R. et al. (2003). Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int. J. Oncol. 22, 891898.
  • You, L., He, B., Xu, Z. et al. (2004). An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. 64, 53855389.
  • Zilberberg, A., Yaniv, A., and Gazit, A. (2004). The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signaling pathway. J. Biol. Chem. 279, 1753517542.