SEARCH

SEARCH BY CITATION

References

  • Aksan, I., and Goding, C.R. (1998). Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol. Cell. Biol. 18, 69306938.
  • Amiel, J., Watkin, P.M., Tassabehji, M., Read, A.P., and Winter, R.M. (1998). Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin. Dysmorphol. 7, 1720.
  • Anderson, M.G., Smith, R.S., Hawes, N.L., Zabaleta, A., Chang, B., Wiggs, J.L., and John, S.W. (2002). Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat. Genet. 30, 8185.
  • Aoki, H., and Moro, O. (2002). Involvement of microphthalmia-associated transcription factor (MITF) in expression of human melanocortin-1 receptor (MC1R). Life Sci. 71, 21712179.
  • Assoian, R.K., and Yung, Y. (2008). A reciprocal relationship between Rb and Skp2: implications for restriction point control, signal transduction to the cell cycle and cancer. Cell Cycle 7, 2427.
  • Bahadoran, P., Aberdam, E., Mantoux, F., Busca, R., Bille, K., Yalman, N., De Saint-Basile, G., Casaroli-Marano, R., Ortonne, J.P., and Ballotti, R. (2001). Rab27a: a key to melanosome transport in human melanocytes. J. Cell Biol. 152, 843850.
  • Bailet, O., Fenouille, N., Abbe, P. et al. (2009). Spleen tyrosine kinase functions as a tumor suppressor in melanoma cells by inducing senescence-like growth arrest. Cancer Res. 69, 27482756.
  • Baxter, L.L., and Pavan, W.J. (2003). Pmel17 expression is Mitf-dependent and reveals cranial melanoblast migration during murine development. Gene Expr. Patterns 3, 703707.
  • Bejar, J., Hong, Y., and Schartl, M. (2003). Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes. Development 130, 65456553.
  • Bennett, D.C. (2008). How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res. 21, 2738.
  • Bentley, N.J., Eisen, T., and Goding, C.R. (1994). Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell. Biol. 14, 79968006.
  • Berson, J.F., Harper, D.C., Tenza, D., Raposo, G., and Marks, M.S. (2001). Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol. Biol. Cell 12, 34513464.
  • Berthet, C., Aleem, E., Coppola, V., Tessarollo, L., and Kaldis, P. (2003). Cdk2 knockout mice are viable. Curr. Biol. 13, 17751785.
  • Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J.P., and Ballotti, R. (1998). Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell. Biol. 18, 694702.
  • Beuret, L., Flori, E., Denoyelle, C., Bille, K., Busca, R., Picardo, M., Bertolotto, C., and Ballotti, R. (2007). Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J. Biol. Chem. 282, 1414014147.
  • Brito, F.C., and Kos, L. (2008). Timeline and distribution of melanocyte precursors in the mouse heart. Pigment Cell Melanoma Res. 21, 464470.
  • Bronner-Fraser, M., and Fraser, S.E. (1988). Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161164.
  • Busca, R., and Ballotti, R. (2000). Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13, 6069.
  • Busca, R., Berra, E., Gaggioli, C. et al. (2005). Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. J. Cell Biol. 170, 4959.
  • Carreira, S., Liu, B., and Goding, C.R. (2000). The gene encoding the T-box factor Tbx2 is a target for the microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 275, 2192021927.
  • Carreira, S., Goodall, J., Aksan, I., La Rocca, S.A., Galibert, M.D., Denat, L., Larue, L., and Goding, C.R. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433, 764769.
  • Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K.S., Testori, A., Larue, L., and Goding, C.R. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 20, 34263439.
  • Chalhoub, N., Benachenhou, N., Rajapurohitam, V., Pata, M., Ferron, M., Frattini, A., Villa, A., and Vacher, J. (2003). Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat. Med. 9, 399406.
  • Cheli, Y., Luciani, F., Khaled, M., Beuret, L., Bille, K., Gounon, P., Ortonne, J.P., Bertolotto, C., and Ballotti, R. (2009). {alpha}MSH and Cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism. J. Biol. Chem. 284, 1869918706.
  • Chiaverini, C., Beuret, L., Flori, E., Busca, R., Abbe, P., Bille, K., Bahadoran, P., Ortonne, J.P., Bertolotto, C., and Ballotti, R. (2008). Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport. J. Biol. Chem. 283, 1263512642.
  • Chintala, S., Li, W., Lamoreux, M.L. et al. (2005). Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc. Natl. Acad. Sci. U S A 102, 1096410969.
  • Cortese, K., Giordano, F., Surace, E.M., Venturi, C., Ballabio, A., Tacchetti, C., and Marigo, V. (2005). The ocular albinism type 1 (OA1) gene controls melanosome maturation and size. Invest. Ophthalmol. Vis. Sci. 46, 43584364.
  • Cutler, D.F. (2002). Introduction: lysosome-related organelles. Semin. Cell Dev. Biol. 13, 261262.
  • De La Serna, I.L., Ohkawa, Y., Higashi, C., Dutta, C., Osias, J., Kommajosyula, N., Tachibana, T., and Imbalzano, A.N. (2006). The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes. J. Biol. Chem. 281, 2023320241.
  • Dell’angelica, E.C., Mullins, C., Caplan, S., and Bonifacino, J.S. (2000). Lysosome-related organelles. FASEB J. 14, 12651278.
  • Deng, C., Zhang, P., Harper, J.W., Elledge, S.J., and Leder, P. (1995). Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675684.
  • Du, J., and Fisher, D.E. (2002). Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. J. Biol. Chem. 277, 402406.
  • Du, J., Miller, A.J., Widlund, H.R., Horstmann, M.A., Ramaswamy, S., and Fisher, D.E. (2003). MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am. J. Pathol. 163, 333343.
  • Du, J., Widlund, H.R., Horstmann, M.A., Ramaswamy, S., Ross, K., Huber, W.E., Nishimura, E.K., Golub, T.R., and Fisher, D.E. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565576.
  • Dynek, J.N., Chan, S.M., Liu, J., Zha, J., Fairbrother, W.J., and Vucic, D. (2008). Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas. Cancer Res. 68, 31243132.
  • Esumi, N., Kachi, S., Campochiaro, P.A., and Zack, D.J. (2007). VMD2 promoter requires two proximal E-box sites for its activity in vivo and is regulated by the MITF-TFE family. J. Biol. Chem. 282, 18381850.
  • Everts, V., De Vries, T.J., and Helfrich, M.H. (2009). Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. Biochim. Biophys. Acta 1792, 757765.
  • Fuller, B.B., Spaulding, D.T., and Smith, D.R. (2001). Regulation of the catalytic activity of preexisting tyrosinase in black and Caucasian human melanocyte cell cultures. Exp. Cell Res. 262, 197208.
  • Gaggioli, C., Busca, R., Abbe, P., Ortonne, J.P., and Ballotti, R. (2003). Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Res. 16, 374382.
  • Galibert, M.D., Carreira, S., and Goding, C.R. (2001). The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression. EMBO J. 20, 50225031.
  • Gelineau-Van Waes, J., Smith, L., Van Waes, M., Wilberding, J., Eudy, J.D., Bauer, L.K., and Maddox, J. (2008). Altered expression of the iron transporter Nramp1 (Slc11a1) during fetal development of the retinal pigment epithelium in microphthalmia-associated transcription factor Mitf(mi) and Mitf(vitiligo) mouse mutants. Exp. Eye Res. 86, 419433.
  • Gruneberg, H. (1935). A new sub-lethal colour mutation in the house mouse. Proc. R. Soc. Lond. B Biol. Sci. 118, 312342.
  • Hallsson, J.H., Favor, J., Hodgkinson, C. et al. (2000). Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus. Genetics 155, 291300.
  • Harrelson, Z., Kelly, R.G., Goldin, S.N., Gibson-Brown, J.J., Bollag, R.J., Silver, L.M., and Papaioannou, V.E. (2004). Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 131, 50415052.
  • Hemesath, T.J., Price, E.R., Takemoto, C., Badalian, T., and Fisher, D.E. (1998). MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298301.
  • Hoashi, T., Watabe, H., Muller, J., Yamaguchi, Y., Vieira, W.D., and Hearing, V.J. (2005). MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. J. Biol. Chem. 280, 1400614016.
  • Hodgkinson, C.A., Moore, K.J., Nakayama, A., Steingrimsson, E., Copeland, N.G., Jenkins, N.A., and Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395404.
  • Hoek, K.S., Schlegel, N.C., Eichhoff, O.M. et al. (2008). Novel MITF targets identified using a two-step DNA microarray strategy. Pigment Cell Melanoma Res. 21, 665676.
  • Hoeller, C., Thallinger, C., Pratscher, B., Bister, M.D., Schicher, N., Loewe, R., Heere-Ress, E., Roka, F., Sexl, V., and Pehamberger, H. (2005). The non-receptor-associated tyrosine kinase Syk is a regulator of metastatic behavior in human melanoma cells. J. Invest. Dermatol. 124, 12931299.
  • Hornyak, T.J., Hayes, D.J., Chiu, L.Y., and Ziff, E.B. (2001). Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf. Mech. Dev. 101, 4759.
  • Hou, L., and Pavan, W.J. (2008). Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res. 18, 11631176.
  • Hughes, M.J., Lingrel, J.B., Krakowsky, J.M., and Anderson, K.P. (1993). A helix-loop-helix transcription factor-like gene is located at the mi locus. J. Biol. Chem. 268, 2068720690.
  • Hughes, A.E., Newton, V.E., Liu, X.Z., and Read, A.P. (1994). A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1. Nat. Genet. 7, 509512.
  • Isozaki, K., Tsujimura, T., Nomura, S., Morii, E., Koshimizu, U., Nishimune, Y., and Kitamura, Y. (1994). Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype. Am. J. Pathol. 145, 827836.
  • Ito, A., Morii, E., Maeyama, K., Jippo, T., Kim, D.K., Lee, Y.M., Ogihara, H., Hashimoto, K., Kitamura, Y., and Nojima, H. (1998). Systematic method to obtain novel genes that are regulated by mi transcription factor: impaired expression of granzyme B and tryptophan hydroxylase in mi/mi cultured mast cells. Blood 91, 32103221.
  • Ito, A., Jippo, T., Wakayama, T., Morii, E., Koma, Y., Onda, H., Nojima, H., Iseki, S., and Kitamura, Y. (2003). SgIGSF: a new mast-cell adhesion molecule used for attachment to fibroblasts and transcriptionally regulated by MITF. Blood 101, 26012608.
  • Jacobs, J.J., Keblusek, P., Robanus-Maandag, E. et al. (2000). Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nat. Genet. 26, 291299.
  • Jimbow, K., Hua, C., Gomez, P.F., Hirosaki, K., Shinoda, K., Salopek, T.G., Matsusaka, H., Jin, H.Y., and Yamashita, T. (2000). Intracellular vesicular trafficking of tyrosinase gene family protein in eu- and pheomelanosome biogenesis. Pigment Cell Res. 13(Suppl. 8), 110117.
  • Jippo, T., Morii, E., Tsujino, K., Tsujimura, T., Lee, Y.M., Kim, D.K., Matsuda, H., Kim, H.M., and Kitamura, Y. (1997). Involvement of transcription factor encoded by the mouse mi locus (MITF) in expression of p75 receptor of nerve growth factor in cultured mast cells of mice. Blood 90, 26012608.
  • Jippo, T., Lee, Y.M., Katsu, Y., Tsujino, K., Morii, E., Kim, D.K., Kim, H.M., and Kitamura, Y. (1999). Deficient transcription of mouse mast cell protease 4 gene in mutant mice of mi/mi genotype. Blood 93, 19421950.
  • Jordens, I., Westbroek, W., Marsman, M., Rocha, N., Mommaas, M., Huizing, M., Lambert, J., Naeyaert, J.M., and Neefjes, J. (2006). Rab7 and Rab27a control two motor protein activities involved in melanosomal transport. Pigment Cell Res. 19, 412423.
  • Kasper, D., Planells-Cases, R., Fuhrmann, J.C. et al. (2005). Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24, 10791091.
  • Kido, K., Sumimoto, H., Asada, S., Okada, S.M., Yaguchi, T., Kawamura, N., Miyagishi, M., Saida, T., and Kawakami, Y. (2009). Simultaneous suppression of MITF and BRAF V600E enhanced inhibition of melanoma cell proliferation. Cancer Sci. 100, 18631869.
  • Kim, D.K., Morii, E., Ogihara, H., Hashimoto, K., Oritani, K., Lee, Y.M., Jippo, T., Adachi, S., Kanakura, Y., and Kitamura, Y. (1998). Impaired expression of integrin alpha-4 subunit in cultured mast cells derived from mutant mice of mi/mi genotype. Blood 92, 19731980.
  • Kitamura, Y., Morii, E., Jippo, T., and Ito, A. (2002). Effect of MITF on mast cell differentiation. Mol. Immunol. 38, 11731176.
  • Kitamura, Y., Oboki, K., and Ito, A. (2006), Molecular mechanisms of mast cell development. Immunol. Allergy Clin. North Am. 26, 387405; v.
  • Lamason, R.L., Mohideen, M.A., Mest, J.R. et al. (2005). SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 17821786.
  • Lang, D., Lu, M.M., Huang, L., Engleka, K.A., Zhang, M., Chu, E.Y., Lipner, S., Skoultchi, A., Millar, S.E., and Epstein, J.A. (2005). Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433, 884887.
  • Larribere, L., Hilmi, C., Khaled, M., Gaggioli, C., Bille, K., Auberger, P., Ortonne, J.P., Ballotti, R., and Bertolotto, C. (2005). The cleavage of microphthalmia-associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis. Genes Dev. 19, 19801985.
  • Levy, C., Khaled, M., Robinson, K.C., Veguilla, R.A., Chen, P.-H., Yokoyama, S., Makino, L., Lu, J., Beermann F., C.H.I.N., and L., etal. (2009). Lineage specific transcriptional regulation of DICER by MITF during melanocyte differentiation. Pigment Cell Melanoma Res. 22, 883A.
  • Liu, F., Fu, Y., and Meyskens Jr, F.L. (2009). MiTF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref-1. J. Invest. Dermatol. 129, 422431.
  • Loercher, A.E., Tank, E.M., Delston, R.B., and Harbour, J.W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J. Cell Biol. 168, 3540.
  • Loftus, S.K., Antonellis, A., Matera, I. et al. (2009). Gpnmb is a melanoblast-expressed, MITF-dependent gene. Pigment Cell Melanoma Res. 22, 99110.
  • Lowings, P., Yavuzer, U., and Goding, C.R. (1992). Positive and negative elements regulate a melanocyte-specific promoter. Mol. Cell. Biol. 12, 36533662.
  • Ludwig, A., Rehberg, S., and Wegner, M. (2004). Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett. 556, 236244.
  • Luo, R., Gao, J., Wehrle-Haller, B., and Henion, P.D. (2003). Molecular identification of distinct neurogenic and melanogenic neural crest sublineages. Development 130, 321330.
  • Mak, S.S., Moriyama, M., Nishioka, E., Osawa, M., and Nishikawa, S. (2006). Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev. Biol. 291, 144153.
  • Mammoto, A., Huang, S., Moore, K., Oh, P., and Ingber, D.E. (2004). Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J. Biol. Chem. 279, 2632326330.
  • Mani, S.A., Guo, W., Liao, M.J. et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704715.
  • Mansky, K.C., Marfatia, K., Purdom, G.H., Luchin, A., Hume, D.A., and Ostrowski, M.C. (2002). The microphthalmia transcription factor (MITF) contains two N-terminal domains required for transactivation of osteoclast target promoters and rescue of mi mutant osteoclasts. J. Leukoc. Biol. 71, 295303.
  • Mcgill, G.G., Horstmann, M., Widlund, H.R. et al. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707718.
  • Mcgill, G.G., Haq, R., Nishimura, E.K., and Fisher, D.E. (2006). c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem. 281, 1036510373.
  • Meadows, N.A., Sharma, S.M., Faulkner, G.J., Ostrowski, M.C., Hume, D.A., and Cassady, A.I. (2007). The expression of Clcn7 and Ostm1 in osteoclasts is coregulated by microphthalmia transcription factor. J. Biol. Chem. 282, 18911904.
  • Menasche, G., Ho, C.H., Sanal, O., Feldmann, J., Tezcan, I., Ersoy, F., Houdusse, A., Fischer, A., and De Saint Basile, G. (2003). Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J. Clin. Invest. 112, 450456.
  • Miller, A.J., Levy, C., Davis, I.J., Razin, E., and Fisher, D.E. (2005). Sumoylation of MITF and its related family members TFE3 and TFEB. J. Biol. Chem. 280, 146155.
  • Morii, E., and Oboki, K. (2004). MITF is necessary for generation of prostaglandin D2 in mouse mast cells. J. Biol. Chem. 279, 4892348929.
  • Morii, E., Tsujimura, T., Jippo, T., Hashimoto, K., Takebayashi, K., Tsujino, K., Nomura, S., Yamamoto, M., and Kitamura, Y. (1996). Regulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood 88, 24882494.
  • Morii, E., Jippo, T., Tsujimura, T., Hashimoto, K., Kim, D.K., Lee, Y.M., Ogihara, H., Tsujino, K., Kim, H.M., and Kitamura, Y. (1997). Abnormal expression of mouse mast cell protease 5 gene in cultured mast cells derived from mutant mi/mi mice. Blood 90, 30573066.
  • Murakami, H., and Arnheiter, H. (2005). Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res. 18, 265277.
  • Murakami, M., Ikeda, T., Ogawa, K., and Funaba, M. (2003). Transcriptional activation of mouse mast cell protease-9 by microphthalmia-associated transcription factor. Biochem. Biophys. Res. Commun. 311, 410.
  • Murakami, M., Ikeda, T., Saito, T., Ogawa, K., Nishino, Y., Nakaya, K., and Funaba, M. (2006). Transcriptional regulation of plasminogen activator inhibitor-1 by transforming growth factor-beta, activin A and microphthalmia-associated transcription factor. Cell. Signal. 18, 256265.
  • Nakayama, A., Nguyen, M.T., Chen, C.C., Opdecamp, K., Hodgkinson, C.A., and Arnheiter, H. (1998). Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech. Dev. 70, 155166.
  • Nieto, M.A. (2002). The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155166.
  • Nishimura, E.K., Granter, S.R., and Fisher, D.E. (2005). Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720724.
  • Oboki, K., Morii, E., Kataoka, T.R., Jippo, T., and Kitamura, Y. (2002). Isoforms of mi transcription factor preferentially expressed in cultured mast cells of mice. Biochem. Biophys. Res. Commun. 290, 12501254.
  • Opdecamp, K., Kos, L., Arnheiter, H., and Pavan, W.J. (1998). Endothelin signalling in the development of neural crest-derived melanocytes. Biochem. Cell Biol. 76, 10931099.
  • Ortega, S., Prieto, I., Odajima, J., Martin, A., Dubus, P., Sotillo, R., Barbero, J.L., Malumbres, M., and Barbacid, M. (2003). Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat. Genet. 35, 2531.
  • Park, H.Y., Perez, J.M., Laursen, R., Hara, M., and Gilchrest, B.A. (1999). Protein kinase C-beta activates tyrosinase by phosphorylating serine residues in its cytoplasmic domain. J. Biol. Chem. 274, 1647016478.
  • Park, H.Y., Wu, C., Yonemoto, L., Murphy-Smith, M., Wu, H., Stachur, C.M., and Gilchrest, B.A. (2006). MITF mediates cAMP-induced protein kinase C-beta expression in human melanocytes. Biochem. J. 395, 571578.
  • Prince, S., Carreira, S., Vance, K.W., Abrahams, A., and Goding, C.R. (2004). Tbx2 directly represses the expression of the p21WAF1 cyclin-dependent kinase inhibitor. Cancer Res. 64, 16691674.
  • Ramirez, A., Faupel, J., Goebel, I., Stiller, A., Beyer, S., Stockle, C., Hasan, C., Bode, U., Kornak, U., and Kubisch, C. (2004). Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum. Mutat. 23, 471476.
  • Raposo, G., Tenza, D., Murphy, D.M., Berson, J.F., and Marks, M.S. (2001). Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J. Cell Biol. 152, 809824.
  • Ripoll, V.M., Meadows, N.A., Raggatt, L.J., Chang, M.K., Pettit, A.R., Cassady, A.I., and Hume, D.A. (2008). Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene 413, 3241.
  • Rodriguez, M., Aladowicz, E., Lanfrancone, L., and Goding, C.R. (2008). Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Cancer Res. 68, 78727881.
  • Rose, A.A., Pepin, F., Russo, C., Abou Khalil, J.E., Hallett, M., and Siegel, P.M. (2007). Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res. 5, 10011014.
  • Sakata, D., Taniguchi, H., Yasuda, S., Adachi-Morishima, A., Hamazaki, Y., Nakayama, R., Miki, T., Minato, N., and Narumiya, S. (2007). Impaired T lymphocyte trafficking in mice deficient in an actin-nucleating protein, mDia1. J. Exp. Med. 204, 20312038.
  • Sanchez-Martin, M., Rodriguez-Garcia, A., Perez-Losada, J., Sagrera, A., Read, A.P., and Sanchez-Garcia, I. (2002). SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum. Mol. Genet. 11, 32313236.
  • Sato-Jin, K., Nishimura, E.K., Akasaka, E. et al. (2008). Epistatic connections between microphthalmia-associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders. FASEB J. 22, 11551168.
  • Schepsky, A., Traustadottir, G., Goding, C., and Steingrìmsson, E. (2009). Site specific acetylation regulates MITF target binding affinity and transcriptional activity in melanocytes and melanoma. Pigment Cell Melanoma Res. 22, 676A.
  • Schiaffino, M.V., and Tacchetti, C. (2005). The ocular albinism type 1 (OA1) protein and the evidence for an intracellular signal transduction system involved in melanosome biogenesis. Pigment Cell Res. 18, 227233.
  • Schulman, B.A., Carrano, A.C., Jeffrey, P.D., Bowen, Z., Kinnucan, E.R., Finnin, M.S., Elledge, S.J., Harper, J.W., Pagano, M., and Pavletich, N.P. (2000). Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381386.
  • Seabra, M.C., and Coudrier, E. (2004). Rab GTPases and myosin motors in organelle motility. Traffic 5, 393399.
  • Selzer, E., Wacheck, V., Lucas, T. et al. (2002). The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma. Cancer Res. 62, 20982103.
  • Shahlaee, A.H., Brandal, S., Lee, Y.N., Jie, C., and Takemoto, C.M. (2007). Distinct and shared transcriptomes are regulated by microphthalmia-associated transcription factor isoforms in mast cells. J. Immunol. 178, 378388.
  • Sharma, S.M., Bronisz, A., Hu, R., Patel, K., Mansky, K.C., Sif, S., and Ostrowski, M.C. (2007). MITF and PU.1 recruit p38 MAPK and NFATc1 to target genes during osteoclast differentiation. J. Biol. Chem. 282, 1592115929.
  • Shiohara, M., Shigemura, T., Suzuki, T., Tanaka, M., Morii, E., Ohtsu, H., Shibahara, S., and Koike, K. (2009). MITF-CM, a newly identified isoform of microphthalmia-associated transcription factor, is expressed in cultured mast cells. Int. J. Lab. Hematol. 31, 215226.
  • Spritz, R.A. (1998). Genetic defects in Chediak-Higashi syndrome and the beige mouse. J. Clin. Immunol. 18, 97105.
  • Steingrimsson, E., Moore, K.J., Lamoreux, M.L. et al. (1994). Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat. Genet. 8, 256263.
  • Steingrimsson, E., Copeland, N.G., and Jenkins, N.A. (2004). Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365411.
  • Sulem, P., Gudbjartsson, D.F., Stacey, S.N. et al. (2007). Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 39, 14431452.
  • Tachibana, M., Perez-Jurado, L.A., Nakayama, A., Hodgkinson, C.A., Li, X., Schneider, M., Miki, T., Fex, J., Francke, U., and Arnheiter, H. (1994). Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3. Hum. Mol. Genet. 3, 553557.
  • Tachibana, M., Takeda, K., Nobukuni, Y., Urabe, K., Long, J.E., Meyers, K.A., Aaronson, S.A., and Miki, T. (1996). Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat. Genet. 14, 5054.
  • Takeda, K., Takemoto, C., Kobayashi, I., Watanabe, A., Nobukuni, Y., Fisher, D.E., and Tachibana, M. (2000). Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum. Mol. Genet. 9, 125132.
  • Takemoto, C.M., Yoon, Y.J., and Fisher, D.E. (2002). The identification and functional characterization of a novel mast cell isoform of the microphthalmia-associated transcription factor. J. Biol. Chem. 277, 3024430252.
  • Tomihari, M., Hwang, S.H., Chung, J.S., Cruz Jr, P.D., and Ariizumi, K. (2009). Gpnmb is a melanosome-associated glycoprotein that contributes to melanocyte/keratinocyte adhesion in a RGD-dependent fashion. Exp. Dermatol. 18, 586595.
  • Tsujimura, T., Morii, E., Nozaki, M., Hashimoto, K., Moriyama, Y., Takebayashi, K., Kondo, T., Kanakura, Y., and Kitamura, Y. (1996). Involvement of transcription factor encoded by the mi locus in the expression of c-kit receptor tyrosine kinase in cultured mast cells of mice. Blood 88, 12251233.
  • Vachtenheim, J., Novotna, H., and Ghanem, G. (2001). Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia-associated transcription factor. J. Invest. Dermatol. 117, 15051511.
  • Vance, K.W., Carreira, S., Brosch, G., and Goding, C.R. (2005). Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Cancer Res. 65, 22602268.
  • Veis, D.J., Sorenson, C.M., Shutter, J.R., and Korsmeyer, S.J. (1993). Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229240.
  • Vetrini, F., Auricchio, A., Du, J., Angeletti, B., Fisher, D.E., Ballabio, A., and Marigo, V. (2004). The microphthalmia transcription factor (Mitf) controls expression of the ocular albinism type 1 gene: link between melanin synthesis and melanosome biogenesis. Mol. Cell. Biol. 24, 65506559.
  • Wasmeier, C., Hume, A.N., Bolasco, G., and Seabra, M.C. (2008). Melanosomes at a glance. J. Cell Sci. 121, 39953999.
  • Williams, C.M., and Galli, S.J. (2000). The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 105, 847859.
  • Wilson, Y.M., Richards, K.L., Ford-Perriss, M.L., Panthier, J.J., and Murphy, M. (2004). Neural crest cell lineage segregation in the mouse neural tube. Development 131, 61536162.
  • Wu, M., Hemesath, T.J., Takemoto, C.M., Horstmann, M.A., Wells, A.G., Price, E.R., Fisher, D.Z., and Fisher, D.E. (2000). c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301312.
  • Xu, W., Gong, L., Haddad, M.M., Bischof, O., Campisi, J., Yeh, E.T., and Medrano, E.E. (2000). Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255, 135143.
  • Yaar, M., Eller, M.S., Dibenedetto, P., Reenstra, W.R., Zhai, S., Mcquaid, T., Archambault, M., and Gilchrest, B.A. (1994). The trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes. J. Clin. Invest. 94, 15501562.
  • Yajima, I., and Larue, L. (2008). The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat colour. Pigment Cell Melanoma Res. 21, 471476.
  • Yasumoto, K., Takeda, K., Saito, H., Watanabe, K., Takahashi, K., and Shibahara, S. (2002). Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. EMBO J. 21, 27032714.
  • Yavuzer, U., Keenan, E., Lowings, P., Vachtenheim, J., Currie, G., and Goding, C.R. (1995). The Microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 10, 123134.
  • Yu, K., Qu, Z., Cui, Y., and Hartzell, H.C. (2007). Chloride channel activity of bestrophin mutants associated with mild or late-onset macular degeneration. Invest. Ophthalmol. Vis. Sci. 48, 46944705.
  • Zhang, X.J., Chen, J.J., and Liu, J.B. (2005). The genetic concept of vitiligo. J. Dermatol. Sci. 39, 137146.