SEARCH

SEARCH BY CITATION

References

  • Alao, J.P. (2007). The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol. Cancer 6, 116.
  • Baldwin, E.L., and Osheroff, N. (2005). Etoposide, Topoisomerase II and Cancer. Current Medicinal Chemistry-Anti-Cancer Agents 5, 363372.
  • Barbash, O., Zamfirova, P., Lin, D.I., Chen, X., Yang, K., Nakagawa, H., Lu, F., Rustgi, A.K., and Diehl, J.A. (2008). Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell 14, 6878.
  • Bhatt, K.V., Spofford, L.S., Aram, G., Mcmullen, M., Pumiglia, K., and Aplin, A.E. (2005). Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene 12, 34593471.
  • Bhatt, K.V., Hu, R., Spofford, L.S., and Aplin, A.E. (2007). Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27(Kip1) in human melanoma cells. Oncogene 26, 10561066.
  • Cardozo, T., and Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739751.
  • Chelouche-Lev, D., Kluger, H.M., Berger, A.J., Rimm, D.L., and Price, J.E. (2004). alphaB-crystallin as a marker of lymph node involvement in breast carcinoma. Cancer 100, 25432548.
  • Conner, S.R., Scott, G., and Aplin, A.E. (2003). Adhesion-dependent activation of the ERK1/2 cascade is by-passed in melanoma cells. J. Biol. Chem. 278, 3454834554.
  • Davies, H., Bignell, G.R., Cox, C. et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417, 949954.
  • Den Engelsman, J., Keijsers, V., De Jong, W.W., and Boelens, W.C. (2003). The small heat-shock protein alphaB-crystallin promotes FBX4-dependent ubiquitination. J. Biol. Chem. 278, 46994704.
  • Diehl, J.A., Zindy, F., and Sherr, C.J. (1997). Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11, 957972.
  • Guo, Y., Yang, K., Harwalkar, J., Nye, J.M., Mason, D.R., Garrett, M.D., Hitomi, M., and Stacey, D.W. (2005). Phosphorylation of cyclin D1 at Thr 286 during S phase leads to its proteasomal degradation and allows efficient DNA synthesis. Oncogene 24, 25992612.
  • Hao, B., Zheng, N., Schulman, B.A., Wu, G., Miller, J.J., Pagano, M., and Pavletich, N.P. (2005). Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol. Cell 20, 919.
  • Hu, R., and Aplin, A. (2008). Skp2 regulates G2/M progression in a p53-dependent manner. Mol. Biol. Cell 19, 46024610.
  • Kimura, E.T., Nikiforova, M.N., Zhu, Z., Knauf, J.A., Nikiforov, Y.E., and Fagin, J.A. (2003). High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 14541457.
  • Lin, D.I., Barbash, O., Kumar, K.G., Weber, J.D., Harper, J.W., Klein-Szanto, A.J., Rustgi, A., Fuchs, S.Y., and Diehl, J.A. (2006). Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol. Cell 24, 355366.
  • Liu, J., Suresh Kumar, K.G., Yu, D., Molton, S.A., Mcmahon, M., Herlyn, M., Thomas-Tikhonenko, A., and Fuchs, S.Y. (2007). Oncogenic BRAF regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells. Oncogene 26, 19541958.
  • Mineva, I., Gartner, W., Hauser, P., Kainz, A., Loffler, M., Wolf, G., Oberbauer, R., Weissel, M., and Wagner, L. (2005). Differential expression of alphaB-crystallin and Hsp27-1 in anaplastic thyroid carcinomas because of tumor-specific alphaB-crystallin gene (CRYAB) silencing. Cell Stress Chaperones 10, 171184.
  • Moyano, J.V., Evans, J.R., Chen, F. et al. (2006). Alpha B-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J. Clin. Invest. 116, 261270.
  • Namba, H., Nakashima, M., Hayashi, T., Hayashida, N., Maeda, S., Rogounovitch, T.I., Ohtsuru, A., Saenko, V.A., Kanematsu, T., and Yamashita, S. (2003). Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 88, 43934397.
  • Okabe, H., Lee, S.H., Phuchareon, J., Albertson, D.G., Mccormick, F., and Tetsu, O. (2006). A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS ONE 1, e128.
  • Pagano, M., Theodoras, A.M., Tam, S.W., and Draetta, G.F. (1994). Cyclin D1-mediated inhibition of repair and replicative DNA synthesis in human fibroblasts. Genes Dev. 8, 16271639.
  • Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 29, e45.
  • Santra, M.K., Wajapeyee, N., and Green, M.R. (2009). F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature 459, 722725.
  • Satyamoorthy, K., Dejesus, E., Linnenbach, A.J., Kraj, B., Kornreich, D.L., Rendle, S., Elder, D.E., and Herlyn, M. (1997). Melanoma cell lines from different stages of progression and their biological and molecular analyses. Melanoma Res. 7, S35S42.
  • Sauter, E.R., Yeo, U.-C., Von Stemm, A. et al. (2002). Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res. 62, 32003206.
  • Spruck, C., Strohmaier, H., Watson, M., Smith, A.P.L., Ryan, A., Krek, W., and Reed, S.I. (2001). A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27Kip1. Mol. Cell 7, 639650.
  • Wei, S., Yang, H.-C., Chuang, H.-C., Yang, J., Kulp, S.K., Lu, P.-J., Lai, M.-D., and Chen, C.-S. (2008). A novel mechanism by which thiazolidinediones facilitate the proteasomal degradation of cyclin D1 in cancer cells. J. Biol. Chem. 283, 2675926770.