SEARCH

SEARCH BY CITATION

References

  • Ahmed, A.U., Schmidt, R.L., Park, C.H. et al. (2008). Effect of disrupting seven-in-absentia homolog 2 function on lung cancer cell growth. J. Natl Cancer Inst. 100, 16061629.
  • Akhurst, R.J., and Derynck, R. (2001). TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol. 11, S44S51.
  • Amiri, K.I., and Richmond, A. (2005). Role of nuclear factor-kappa B in melanoma. Cancer Metastasis Rev. 24, 301313.
  • Amiri, K.I., Horton, L.W., LaFleur, B.J., Sosman, J.A., and Richmond, A. (2004). Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res. 64, 49124918.
  • Aza-Blanc, P., Ramirez-Weber, F.A., Laget, M.P., Schwartz, C., and Kornberg, T.B. (1997). Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 10431053.
  • Bales, E.S., Dietrich, C., Bandyopadhyay, D. et al. (1999). High levels of expression of p27KIP1 and cyclin E in invasive primary malignant melanomas. J. Invest. Dermatol. 113, 10391046.
  • Balint, K., Xiao, M., Pinnix, C.C., Soma, A., Veres, I., Juhasz, I., Brown, E.J., Capobianco, A.J., Herlyn, M., and Liu, Z.J. (2005). Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J. Clin. Invest. 115, 31663176.
  • Bardeesy, N., Bastian, B.C., Hezel, A., Pinkel, D., DePinho, R.A., and Chin, L. (2001). Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol. Cell. Biol. 21, 21442153.
  • Bashir, T., and Pagano, M. (2003). Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv. Cancer Res. 88, 101144.
  • Bentley, N.J., Eisen, T., and Goding, C.R. (1994). Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell. Biol. 14, 79968006.
  • Bhatia, N., Thiyagarajan, S., Elcheva, I., Saleem, M., Dlugosz, A., Mukhtar, H., and Spiegelman, V.S. (2006). Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J. Biol. Chem. 281, 1932019326.
  • Bhatt, K.V., Spofford, L.S., Aram, G., McMullen, M., Pumiglia, K., and Aplin, A.E. (2005). Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene 24, 34593471.
  • Bhatt, K.V., Hu, R., Spofford, L.S., and Aplin, A.E. (2007). Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells. Oncogene 26, 10561066.
  • Bowden, G.T. (2004). Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat. Rev. Cancer 4, 2335.
  • Busca, R., Berra, E., Gaggioli, C. et al. (2005). Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. J. Cell Biol. 170, 4959.
  • Caamano, J., Zhang, S.Y., Rosvold, E.A., Bauer, B., and Klein-Szanto, A.J. (1993). p53 alterations in human squamous cell carcinomas and carcinoma cell lines. Am. J. Pathol. 142, 11311139.
  • Chen, Z., Malhotra, P.S., Thomas, G.R. et al. (1999). Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin. Cancer Res. 5, 13691379.
  • Chen, M.F., Lee, K.D., Lu, M.S., Chen, C.C., Hsieh, M.J., Liu, Y.H., Lin, P.Y., and Chen, W.C. (2009). The predictive role of E2-EPF ubiquitin carrier protein in esophageal squamous cell carcinoma. J. Mol. Med. 87, 307320.
  • Chien, A.J., Moore, E.C., Lonsdorf, A.S., Kulikauskas, R.M., Rothberg, B.G., Berger, A.J., Major, M.B., Hwang, S.T., Rimm, D.L., and Moon, R.T. (2009). Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl Acad. Sci. USA 106, 11931198.
  • Dai, P., Akimaru, H., Tanaka, Y., Maekawa, T., Nakafuku, M., and Ishii, S. (1999). Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J. Biol. Chem. 274, 81438152.
  • Davies, H., Bignell, G.R., Cox, C. et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417, 949954.
  • De Fabo, E.C., Noonan, F.P., Fears, T., and Merlino, G. (2004). Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res. 64, 63726376.
  • Delmas, V., Beermann, F., Martinozzi, S. et al. (2007). Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 29232935.
  • Di Marcotullio, L., Ferretti, E., Greco, A. et al. (2006). Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat. Cell Biol. 8, 14151423.
  • DiGiovanni, J., Bol, D.K., Wilker, E., Beltran, L., Carbajal, S., Moats, S., Ramirez, A., Jorcano, J., and Kiguchi, K. (2000). Constitutive expression of insulin-like growth factor-1 in epidermal basal cells of transgenic mice leads to spontaneous tumor promotion. Cancer Res. 60, 15611570.
  • Ding, X., Sun, J., Wang, L., Li, G., Shen, Y., Zhou, X., and Chen, W. (2008). Overexpression of SENP5 in oral squamous cell carcinoma and its association with differentiation. Oncol. Rep. 20, 10411045.
  • Elcheva, I., Tarapore, R.S., Bhatia, N., and Spiegelman, V.S. (2008). Overexpression of mRNA-binding protein CRD-BP in malignant melanomas. Oncogene 27, 50695074.
  • Eppert, K., Scherer, S.W., Ozcelik, H. et al. (1996). MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543552.
  • Epstein, E.H. (2008). Basal cell carcinomas: attack of the hedgehog. Nat. Rev. Cancer 8, 743754.
  • Frescas, D., and Pagano, M. (2008). Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat. Rev. Cancer 8, 438449.
  • Fuchs, S.Y., Adler, V., Buschmann, T., Wu, X., and Ronai, Z. (1998). Mdm2 association with p53 targets its ubiquitination. Oncogene 17, 25432547.
  • Fukuchi, M., Fukai, Y., Masuda, N., Miyazaki, T., Nakajima, M., Sohda, M., Manda, R., Tsukada, K., Kato, H., and Kuwano, H. (2002). High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res. 62, 71627165.
  • Fukuchi, M., Nakajima, M., Miyazaki, T., Masuda, N., Osawa, H., Manda, R., Tsukada, K., Kato, H., and Kuwano, H. (2006). Lack of activated Smad2 in transforming growth factor-beta signaling is an unfavorable prognostic factor in patients with esophageal squamous cell carcinoma. J. Surg. Oncol. 94, 5156.
  • Gailani, M.R., Bale, S.J., Leffell, D.J. et al. (1992). Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 69, 111117.
  • Ganesan, A.K., Kho, Y., Kim, S.C., Chen, Y., Zhao, Y., and White, M.A. (2007). Broad spectrum identification of SUMO substrates in melanoma cells. Proteomics 7, 22162221.
  • Garraway, L.A., Widlund, H.R., Rubin, M.A. et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117122.
  • Girard, M., and Goossens, M. (2006). Sumoylation of the SOX10 transcription factor regulates its transcriptional activity. FEBS Lett. 580, 16351641.
  • Girnita, L., Girnita, A., and Larsson, O. (2003). Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc. Natl Acad. Sci. USA 100, 82478252.
  • Girnita, L., Shenoy, S.K., Sehat, B., Vasilcanu, R., Girnita, A., Lefkowitz, R.J., and Larsson, O. (2005). {beta}-Arrestin is crucial for ubiquitination and down-regulation of the insulin-like growth factor-1 receptor by acting as adaptor for the MDM2 E3 ligase. J. Biol. Chem. 280, 2441224419.
  • Gupta-Rossi, N., Le Bail, O., Gonen, H., Brou, C., Logeat, F., Six, E., Ciechanover, A., and Israel, A. (2001). Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J. Biol. Chem. 276, 3437134378.
  • Hahn, H., Wicking, C., Zaphiropoulous, P.G. et al. (1996). Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841851.
  • Han, J., Cox, D.G., Colditz, G.A., and Hunter, D.J. (2006). The p53 codon 72 polymorphism, sunburns, and risk of skin cancer in US Caucasian women. Mol. Carcinog. 45, 694700.
  • Hibi, K., Westra, W.H., Borges, M., Goodman, S., Sidransky, D., and Jen, J. (1999). PGP9.5 as a candidate tumor marker for non-small-cell lung cancer. Am. J. Pathol. 155, 711715.
  • Hockel, M., and Vaupel, P. (2001). Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266276.
  • Hu, R., and Aplin, A.E. (2008). Skp2 regulates G2/M progression in a p53-dependent manner. Mol. Biol. Cell 19, 46024610.
  • Huntzicker, E.G., Estay, I.S., Zhen, H., Lokteva, L.A., Jackson, P.K., and Oro, A.E. (2006). Dual degradation signals control Gli protein stability and tumor formation. Genes Dev. 20, 276281.
  • Hutchin, M.E., Kariapper, M.S., Grachtchouk, M., Wang, A., Wei, L., Cummings, D., Liu, J., Michael, L.E., Glick, A., and Dlugosz, A.A. (2005). Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev. 19, 214223.
  • Itoh, M., Kim, C.H., Palardy, G. et al. (2003). Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 6782.
  • Jiang, J. (2006). Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle 5, 24572463.
  • Jiang, J., and Struhl, G. (1998). Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493496.
  • Johnson, R.L., Rothman, A.L., Xie, J. et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 16681671.
  • Jokilehto, T., Rantanen, K., Luukkaa, M., Heikkinen, P., Grenman, R., Minn, H., Kronqvist, P., and Jaakkola, P.M. (2006). Overexpression and nuclear translocation of hypoxia-inducible factor prolyl hydroxylase PHD2 in head and neck squamous cell carcinoma is associated with tumor aggressiveness. Clin. Cancer Res. 12, 10801087.
  • Kaesler, S., Luscher, B., and Ruther, U. (2000). Transcriptional activity of GLI1 is negatively regulated by protein kinase A. Biol. Chem. 381, 545551.
  • Katagiri, Y., Hozumi, Y., and Kondo, S. (2006). Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo. J. Dermatol. Sci. 42, 215224.
  • Katayama, A., Ogino, T., Bandoh, N., Takahara, M., Kishibe, K., Nonaka, S., and Harabuchi, Y. (2007). Overexpression of small ubiquitin-related modifier-1 and sumoylated Mdm2 in oral squamous cell carcinoma: possible involvement in tumor proliferation and prognosis. Int. J. Oncol. 31, 517524.
  • Kim, A.Y., Bommelje, C.C., Lee, B.E. et al. (2008). SCCRO (DCUN1D1) is an essential component of the E3 complex for NEDDylation. J. Biol. Chem. 283, 3321133220.
  • Kim, H.J., Kim, Y.M., Lim, S., Nam, Y.K., Jeong, J., and Lee, K.J. (2009). Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene 28, 117127.
  • Kinzler, K.W., Ruppert, J.M., Bigner, S.H., and Vogelstein, B. (1988). The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332, 371374.
  • Kitajima, S., Kudo, Y., Ogawa, I., Bashir, T., Kitagawa, M., Miyauchi, M., Pagano, M., and Takata, T. (2004). Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Am. J. Pathol. 165, 21472155.
  • Kudo, Y., Kitajima, S., Sato, S., Miyauchi, M., Ogawa, I., and Takata, T. (2001). High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res. 61, 70447047.
  • Kudo, Y., Kitajima, S., Ogawa, I., Miyauchi, M., and Takata, T. (2005). Down-regulation of Cdk inhibitor p27 in oral squamous cell carcinoma. Oral Oncol. 41, 105116.
  • Lain, S., and Lane, D. (2003). Improving cancer therapy by non-genotoxic activation of p53. Eur. J. Cancer 39, 10531060.
  • Larribere, L., Hilmi, C., Khaled, M., Gaggioli, C., Bille, K., Auberger, P., Ortonne, J.P., Ballotti, R., and Bertolotto, C. (2005). The cleavage of microphthalmia-associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis. Genes Dev. 19, 19801985.
  • Larsen, C.N., Krantz, B.A., and Wilkinson, K.D. (1998). Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37, 33583368.
  • Le Borgne, R., and Schweisguth, F. (2003). Notch signaling: endocytosis makes delta signal better. Curr. Biol. 13, R273R275.
  • Levy, C., Khaled, M., and Fisher, D.E. (2006). MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12, 406414.
  • Li, Q., Murphy, M., Ross, J., Sheehan, C., and Carlson, J.A. (2004). Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J. Cutan. Pathol. 31, 633642.
  • Lim, K.P., Sharifah, H., Lau, S.H., Teo, S.H., and Cheong, S.C. (2005). Alterations of the p14ARF-p53-MDM2 pathway in oral squamous cell carcinoma: MDM2 overexpression is a common event. Oncol. Rep. 14, 963968.
  • Lin, X., Liang, M., and Feng, X.H. (2000). Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J. Biol. Chem. 275, 3681836822.
  • Liu, Y., Fallon, L., Lashuel, H.A., Liu, Z., and Lansbury Jr, P.T.. (2002). The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111, 209218.
  • Liu, J., Suresh Kumar, K.G., Yu, D., Molton, S.A., McMahon, M., Herlyn, M., Thomas-Tikhonenko, A., and Fuchs, S.Y. (2007). Oncogenic BRAF regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells. Oncogene 26, 19541958.
  • Massague, J. (2000). How cells read TGF-beta signals. Nat. Rev. Mol. Cell Biol. 1, 169178.
  • McGill, G.G., Horstmann, M., Widlund, H.R. et al. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707718.
  • Miller, A.J., Levy, C., Davis, I.J., Razin, E., and Fisher, D.E. (2005). Sumoylation of MITF and its related family members TFE3 and TFEB. J. Biol. Chem. 280, 146155.
  • Mo, J.S., Kim, M.Y., Han, S.O. et al. (2007). Integrin-linked kinase controls Notch1 signaling by down-regulation of protein stability through Fbw7 ubiquitin ligase. Mol. Cell. Biol. 27, 55655574.
  • Murakami, H., and Arnheiter, H. (2005). Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res. 18, 265277.
  • Myatt, S.S., and Lam, E.W. (2007). The emerging roles of forkhead box (Fox) proteins in cancer. Nat. Rev. Cancer 7, 847859.
  • Nakayama, K., Qi, J., and Ronai, Z. (2009). The ubiquitin ligase Siah2 and the hypoxia response. Mol. Cancer Res. 7, 443451.
  • Nalepa, G., Rolfe, M., and Harper, J.W. (2006). Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5, 596613.
  • Nicolas, M., Wolfer, A., Raj, K., Kummer, J.A., Mill, P., Van Noort, M., Hui, C.C., Clevers, H., Dotto, G.P., and Radtke, F. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 33, 416421.
  • Nilsson, M., Unden, A.B., Krause, D., Malmqwist, U., Raza, K., Zaphiropoulos, P.G., and Toftgard, R. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl Acad. Sci. USA 97, 34383443.
  • Noubissi, F.K., Elcheva, I., Bhatia, N., Shakoori, A., Ougolkov, A., Liu, J., Minamoto, T., Ross, J., Fuchs, S.Y., and Spiegelman, V.S. (2006). CRD-BP mediates stabilization of betaTrCP1 and c-myc mRNA in response to beta-catenin signalling. Nature 441, 898901.
  • Oberg, C., Li, J., Pauley, A., Wolf, E., Gurney, M., and Lendahl, U. (2001). The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J. Biol. Chem. 276, 3584735853.
  • Omholt, K., Platz, A., Ringborg, U., and Hansson, J. (2001). Cytoplasmic and nuclear accumulation of beta-catenin is rarely caused by CTNNB1 exon 3 mutations in cutaneous malignant melanoma. Int. J. Cancer 92, 839842.
  • Orlowski, R.Z., and Kuhn, D.J. (2008). Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res. 14, 16491657.
  • Oro, A.E., Higgins, K.M., Hu, Z., Bonifas, J.M., Epstein Jr, E.H., and Scott, M.P. (1997). Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276, 817821.
  • Pan, Y., Bai, C.B., Joyner, A.L., and Wang, B. (2006). Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell. Biol., 26, 33653377.
  • Park, H.J., Costa, R.H., Lau, L.F., Tyner, A.L., and Raychaudhuri, P. (2008). Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase. Mol. Cell. Biol. 28, 51625171.
  • Perkins, N.D. (2007). Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 4962.
  • Polsky, D., Bastian, B.C., Hazan, C., Melzer, K., Pack, J., Houghton, A., Busam, K., Cordon-Cardo, C., and Osman, I. (2001). HDM2 protein overexpression, but not gene amplification, is related to tumorigenesis of cutaneous melanoma. Cancer Res. 61, 76427646.
  • Prunier, C., Ferrand, N., Frottier, B., Pessah, M., and Atfi, A. (2001). Mechanism for mutational inactivation of the tumor suppressor Smad2. Mol. Cell. Biol. 21, 33023313.
  • Qi, J., Nakayama, K., Gaitonde, S., Goydos, J.S., Krajewski, S., Eroshkin, A., Bar-Sagi, D., Bowtell, D., and Ronai, Z. (2008). The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc. Natl Acad. Sci. USA 105, 1671316718.
  • Qin, J.Z., Ziffra, J., Stennett, L. et al. (2005). Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res. 65, 62826293.
  • Rabut, G., and Peter, M. (2008). Function and regulation of protein NEDDylation. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 9, 969976.
  • Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363397.
  • Ricker, J.L., Chen, Z., Yang, X.P., Pribluda, V.S., Swartz, G.M., and Van Waes, C. (2004). 2-methoxyestradiol inhibits hypoxia-inducible factor 1alpha, tumor growth, and angiogenesis and augments paclitaxel efficacy in head and neck squamous cell carcinoma. Clin. Cancer Res. 10, 86658673.
  • Rimm, D.L., Caca, K., Hu, G., Harrison, F.B., and Fearon, E.R. (1999). Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. Am. J. Pathol. 154, 325329.
  • Ronen, O., Malone, J.P., Kay, P., Bivens, C., Hall, K., Paruchuri, L.P., Mo, Y.Y., Robbins, K.T., and Ran, S. (2009). Expression of a novel marker, Ubc9, in squamous cell carcinoma of the head and neck. Head Neck 31, 845855.
  • Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, E., and Polakis, P. (1997). Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275, 17901792.
  • Sarkaria, I., Charoenrat, P.O., Talbot, S.G. et al. (2006). Squamous cell carcinoma related oncogene/DCUN1D1 is highly conserved and activated by amplification in squamous cell carcinomas. Cancer Res. 66, 94379444.
  • Schmidt, R.L., Park, C.H., Ahmed, A.U., Gundelach, J.H., Reed, N.R., Cheng, S., Knudsen, B.E., and Tang, A.H. (2007). Inhibition of RAS-mediated transformation and tumorigenesis by targeting the downstream E3 ubiquitin ligase seven in absentia homologue. Cancer Res. 67, 1179811810.
  • Semenza, G.L. (2002). HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8, S62S67.
  • Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721732.
  • Setlow, R.B., Woodhead, A.D., and Grist, E. (1989). Animal model for ultraviolet radiation-induced melanoma: platyfish-swordtail hybrid. Proc. Natl Acad. Sci. USA 86, 89228926.
  • Soldatenkov, V.A., Dritschilo, A., Ronai, Z., and Fuchs, S.Y. (1999). Inhibition of homologue of Slimb (HOS) function sensitizes human melanoma cells for apoptosis. Cancer Res. 59, 50855088.
  • Sparrow, L.E., Soong, R., Dawkins, H.J., Iacopetta, B.J., and Heenan, P.J. (1995). p53 gene mutation and expression in naevi and melanomas. Melanoma Res. 5, 93100.
  • Stracke, M.L., Engel, J.D., Wilson, L.W., Rechler, M.M., Liotta, L.A., and Schiffmann, E. (1989). The type I insulin-like growth factor receptor is a motility receptor in human melanoma cells. J. Biol. Chem. 264, 2154421549.
  • Sumimoto, H., Hirata, K., Yamagata, S., Miyoshi, H., Miyagishi, M., Taira, K., and Kawakami, Y. (2006). Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi. Int. J. Cancer 118, 472476.
  • Sunwoo, J.B., Chen, Z., Dong, G., Yeh, N., Crowl Bancroft, C., Sausville, E., Adams, J., Elliott, P., and Van Waes, C. (2001). Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res. 7, 14191428.
  • Takeuchi, T., Adachi, Y., Sonobe, H., Furihata, M., and Ohtsuki, Y. (2006). A ubiquitin ligase, skeletrophin, is a negative regulator of melanoma invasion. Oncogene 25, 70597069.
  • Teh, M.T., Wong, S.T., Neill, G.W., Ghali, L.R., Philpott, M.P., and Quinn, A.G. (2002). FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res. 62, 47734780.
  • Tempe, D., Casas, M., Karaz, S., Blanchet-Tournier, M.F., and Concordet, J.P. (2006). Multisite protein kinase A and glycogen synthase kinase 3beta phosphorylation leads to Gli3 ubiquitination by SCFbetaTrCP. Mol. Cell. Biol. 26, 43164326.
  • Tezel, E., Hibi, K., Nagasaka, T., and Nakao, A. (2000). PGP9.5 as a prognostic factor in pancreatic cancer. Clin. Cancer Res. 6, 47644767.
  • Tokumaru, Y., Yamashita, K., Osada, M., Nomoto, S., Sun, D.I., Xiao, Y., Hoque, M.O., Westra, W.H., Califano, J.A., and Sidransky, D. (2004). Inverse correlation between cyclin A1 hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Res. 64, 59825987.
  • Tokumaru, Y., Yamashita, K., Kim, M.S., Park, H.L., Osada, M., Mori, M., and Sidransky, D. (2008). The role of PGP9.5 as a tumor suppressor gene in human cancer. Int. J. Cancer 123, 753759.
  • Uchida, K., Nagatake, M., Osada, H., Yatabe, Y., Kondo, M., Mitsudomi, T., Masuda, A., and Takahashi, T. (1996). Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Res. 56, 55835585.
  • Uehara, M., Sano, K., Ikeda, H., Nonaka, M., and Asahina, I. (2009). Hypoxia-inducible factor 1 alpha in oral squamous cell carcinoma and its relation to prognosis. Oral Oncol. 45, 241246.
  • Vazquez, A., Bond, E.E., Levine, A.J., and Bond, G.L. (2008). The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov. 7, 979987.
  • Wang, B., and Li, Y. (2006). Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing. Proc. Natl Acad. Sci. USA 103, 3338.
  • Wang, I.C., Chen, Y.J., Hughes, D., Petrovic, V., Major, M.L., Park, H.J., Tan, Y., Ackerson, T., and Costa, R.H. (2005). Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol. Cell. Biol. 25, 1087510894.
  • Welchman, R.L., Gordon, C., and Mayer, R.J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599609.
  • Widlund, H.R., Horstmann, M.A., Price, E.R., Cui, J., Lessnick, S.L., Wu, M., He, X., and Fisher, D.E. (2002). Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J. Cell Biol. 158, 10791087.
  • Wigfield, S.M., Winter, S.C., Giatromanolaki, A., Taylor, J., Koukourakis, M.L., and Harris, A.L. (2008). PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br. J. Cancer 98, 19751984.
  • Wilson, P.O., Barber, P.C., Hamid, Q.A., Power, B.F., Dhillon, A.P., Rode, J., Day, I.N., Thompson, R.J., and Polak, J.M. (1988). The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies. Br. J. Exp. Pathol. 69, 91104.
  • Winston, J.T., Strack, P., Beer-Romero, P., Chu, C.Y., Elledge, S.J., and Harper, J.W. (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 13, 270283.
  • Woenckhaus, C., Maile, S., Uffmann, S., Bansemir, M., Dittberner, T., Poetsch, M., and Giebel, J. (2005). Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome. Histol. Histopathol. 20, 501508.
  • Wu, M., Hemesath, T.J., Takemoto, C.M., Horstmann, M.A., Wells, A.G., Price, E.R., Fisher, D.Z., and Fisher, D.E. (2000). c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301312.
  • Wu, G., Lyapina, S., Das, I., Li, J., Gurney, M., Pauley, A., Chui, I., Deshaies, R.J., and Kitajewski, J. (2001). SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol. Cell. Biol. 21, 74037415.
  • Xu, W., Gong, L., Haddad, M.M., Bischof, O., Campisi, J., Yeh, E.T., and Medrano, E.E. (2000). Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255, 135143.
  • Yamazaki, T., Hibi, K., Takase, T., Tezel, E., Nakayama, H., Kasai, Y., Ito, K., Akiyama, S., Nagasaka, T., and Nakao, A. (2002). PGP9.5 as a marker for invasive colorectal cancer. Clin. Cancer Res. 8, 192195.
  • Yasumoto, K., Yokoyama, K., Shibata, K., Tomita, Y., and Shibahara, S. (1994). Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell. Biol. 14, 80588070.
  • Yasumoto, K., Yokoyama, K., Takahashi, K., Tomita, Y., and Shibahara, S. (1997). Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem. 272, 503509.
  • Yue, S., Chen, Y., and Cheng, S.Y. (2009). Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene 28, 492499.
  • Zhang, L., and Hill, R.P. (2004). Hypoxia enhances metastatic efficiency by up-regulating Mdm2 in KHT cells and increasing resistance to apoptosis. Cancer Res. 64, 41804189.
  • Zhang, Q., Shi, Q., Chen, Y., Yue, T., Li, S., Wang, B., and Jiang, J. (2009). Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase. Proc. Natl Acad. Sci. USA 106, 2119121196.