SEARCH

SEARCH BY CITATION

References

  • Adameyko, I., Lallemend, F., Aquino, J.B. et al. (2009). Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139, 366379.
  • Antonellis, A., Bennett, W.R., Menheniott, T.R., Prasad, A.B., Lee-Lin, S.Q., Green, E.D., Paisley, D., Kelsh, R.N., Pavan, W.J., and Ward, A. (2006). Deletion of long-range sequences at Sox10 compromises developmental expression in a mouse model of Waardenburg–Shah (WS4) syndrome. Hum. Mol. Genet. 15, 259271.
  • Antonellis, A., Huynh, J.L., Lee-Lin, S.Q. et al. (2008). Identification of neural crest and glial enhancers at the mouse Sox10 locus through transgenesis in zebrafish. PLoS Genet. 4, e1000174.
  • Aoki, Y., Saint-Germain, N., Gyda, M., Magner-Fink, E., Lee, Y.H., Credidio, C., and Saint-Jeannet, J.P. (2003). Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev. Biol. 259, 1933.
  • Bakos, R.M., Maier, T., Besch, R., Mestel, D.S., Ruzicka, T., Sturm, R.A., and Berking, C. (2009). Nestin and SOX9 and SOX10 transcription factors are coexpressed in melanoma. Exp. Dermatol. doi: 10.1111/j.1600-0625.2009.00991.x.
  • Barnett, C.P., Mendoza-Londono, R., Blaser, S., Gillis, J., Dupuis, L., Levin, A.V., Chiang, P.W., Spector, E., and Reardon, W. (2009). Aplasia of cochlear nerves and olfactory bulbs in association with SOX10 mutation. Am. J. Med. Genet. A. 149A, 431436.
  • Belmadani, A., Jung, H., Ren, D., and Miller, R.J. (2009). The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles. Differentiation 77, 395411.
  • Blochin, E., and Nonaka, D. (2009). Diagnostic value of Sox10 immunohistochemical staining for the detection of metastatic melanoma in sentinel lymph nodes. Histopathology 55, 626628.
  • Bondurand, N., Kuhlbrodt, K., Pingault, V. et al. (1999). A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum. Mol. Genet. 8, 17851789.
  • Bondurand, N., Pingault, V., Goerich, D.E., Lemort, N., Sock, E., Caignec, C.L., Wegner, M., and Goossens, M. (2000). Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum. Mol. Genet. 9, 19071917.
  • Bondurand, N., Girard, M., Pingault, V., Lemort, N., Dubourg, O., and Goossens, M. (2001). Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum. Mol. Genet. 10, 27832795.
  • Bondurand, N., Dastot-Le Moal, F., Stanchina, L. et al. (2007). Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am. J. Hum. Genet. 81, 11691185.
  • Botchkareva, N.V., Botchkarev, V.A., and Gilchrest, B.A. (2003). Fate of melanocytes during development of the hair follicle pigmentary unit. J. Investig. Dermatol. Symp. Proc. 8, 7679.
  • Bowles, J., Schepers, G., and Koopman, P. (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239255.
  • Britsch, S., Goerich, D.E., Riethmacher, D., Peirano, R.I., Rossner, M., Nave, K.A., Birchmeier, C., and Wegner, M. (2001). The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 6678.
  • Buac, K., Watkins-Chow, D.E., Loftus, S.K., Larson, D.M., Incao, A., Gibney, G., and Pavan, W.J. (2008). A Sox10 expression screen identifies an amino acid essential for Erbb3 function. PLoS Genet. 4, e1000177.
  • Carney, T.J., Dutton, K.A., Greenhill, E., Delfino-Machin, M., Dufourcq, P., Blader, P., and Kelsh, R.N. (2006). A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development 133, 46194630.
  • Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K.S., Testori, A., Larue, L., and Goding, C.R. (2006). Mitf regulation of dia1 controls melanoma proliferation and invasiveness. Genes Dev. 20, 34263439.
  • Cheung, M., and Briscoe, J. (2003). Neural crest development is regulated by the transcription factor Sox9. Development 130, 56815693.
  • Cheung, M., Chaboissier, M.-C., Mynett, A., Hirst, E., Schedl, A., and Briscoe, J. (2005). The transcriptional control of trunk neural crest induction, survival, and delamination. Dev. Cell 8, 179192.
  • Choi, Y.J., Yoon, T.J., and Lee, Y.H. (2008). Changing expression of the genes related to human hair graying. Eur. J. Dermatol. 18, 397399.
  • Commo, S., Gaillard, O., Thibaut, S., and Bernard, B.A. (2004). Absence of TRP-2 in melanogenic melanocytes of human hair. Pigment Cell Res. 17, 488497.
  • Cook, A.L., Donatien, P.D., Smith, A.G., Murphy, M., Jones, M.K., Herlyn, M., Bennett, D.C., Leonard, J.H., and Sturm, R.A. (2003). Human melanoblasts in culture: expression of BRN2 and synergistic regulation by fibroblast growth factor-2, stem cell factor, and endothelin-3. J. Invest. Dermatol. 121, 11501159.
  • Cook, A.L., Smith, A.G., Smit, D.J., Leonard, J.H., and Sturm, R.A. (2005). Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Exp. Cell Res. 308, 222235.
  • Cronin, J., Wunderlich, J., Loftus, S.K. et al. (2009). Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res. 22, 435444.
  • Dahlstrand, J., Collins, V.P., and Lendahl, U. (1992a). Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 52, 53345341.
  • Dahlstrand, J., Zimmerman, L.B., McKay, R.D., and Lendahl, U. (1992b). Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J. Cell Sci. 103(Pt 2), 589597.
  • Deal, K.K., Cantrell, V.A., Chandler, R.L., Saunders, T.L., Mortlock, D.P., and Southard-Smith, E.M. (2006). Distant regulatory elements in a Sox10-beta GEO BAC transgene are required for expression of Sox10 in the enteric nervous system and other neural crest-derived tissues. Dev. Dyn. 235, 14131432.
  • den Dunnen, J.T., and Antonarakis, S.E. (2000). Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum. Mutat. 15, 712.
  • Dutton, K.A., Pauliny, A., Lopes, S.S., Elworthy, S., Carney, T.J., Rauch, J., Geisler, R., Haffter, P., and Kelsh, R.N. (2001). Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128, 41134125.
  • Dutton, J.R., Antonellis, A., Carney, T.J., Rodrigues, F.S., Pavan, W.J., Ward, A., and Kelsh, R.N. (2008). An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10. BMC Dev. Biol. 8, 105.
  • Elworthy, S., Lister, J.A., Carney, T.J., Raible, D.W., and Kelsh, R.N. (2003). Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development 130, 28092818.
  • Erickson, C.A., Duong, T.D., and Tosney, K.W. (1992). Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo. Dev. Biol. 151, 251272.
  • Flammiger, A., Besch, R., Cook, A.L., Maier, T., Sturm, R.A., and Berking, C. (2009). SOX9 and SOX10 but not BRN2 are required for nestin expression in human melanoma cells. J. Invest. Dermatol. 129, 945953.
  • Garraway, L.A., Widlund, H.R., Rubin, M.A., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117122.
  • Gasca, S., Canizares, J., De Santa Barbara, P., Mejean, C., Poulat, F., Berta, P., and Boizet-Bonhoure, B. (2002). A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc. Natl Acad. Sci. USA 99, 1119911204.
  • Ghislain, J., and Charnay, P. (2006). Control of myelination in Schwann cells: a Krox20 cis-regulatory element integrates Oct6, Brn2 and Sox10 activities. EMBO Rep. 7, 5258.
  • Girard, M., and Goossens, M. (2006). Sumoylation of the SOX10 transcription factor regulates its transcriptional activity. FEBS Lett. 580, 16351641.
  • Gontan, C., Guttler, T., Engelen, E., Demmers, J., Fornerod, M., Grosveld, F.G., Tibboel, D., Gorlich, D., Poot, R.A., and Rottier, R.J. (2009). Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors. J. Cell Biol. 185, 2734.
  • Guth, S.I., and Wegner, M. (2008). Having it both ways: Sox protein function between conservation and innovation. Cell. Mol. Life Sci. 65, 30003018.
  • Hakami, R.M., Hou, L., Baxter, L.L., Loftus, S.K., Southard-Smith, E.M., Incao, A., Cheng, J., and Pavan, W.J. (2006). Genetic evidence does not support direct regulation of EDNRB by SOX10 in migratory neural crest and the melanocyte lineage. Mech. Dev. 123, 124134.
  • Harley, V.R., Lovell-Badge, R., and Goodfellow, P.N. (1994). Definition of a consensus DNA binding site for SRY. Nucleic Acids Res. 22, 15001501.
  • Hasegawa, J., Goto, Y., Murata, H., Takata, M., Saida, T., and Imokawa, G. (2008). Downregulated melanogenic paracrine cytokine linkages in hypopigmented palmoplantar skin. Pigment Cell Melanoma Res. 21, 687699.
  • Hedstrand, H., Ekwall, O., Olsson, M.J. et al. (2001). The transcription factors SOX9 and SOX10 are vitiligo autoantigens in autoimmune polyendocrine syndrome type I. J. Biol. Chem. 276, 3539035395.
  • Herbarth, B., Pingault, V., Bondurand, N., Kuhlbrodt, K., Hermans-Borgmeyer, I., Puliti, A., Lemort, N., Goossens, M., and Wegner, M. (1998). Mutation of the Sry-related Sox10 gene in dominant megacolon, a mouse model for human Hirschsprung disease. Proc. Natl. Acad. Sci. USA 95, 51615165.
  • Hirobe, T. (1984). Histochemical survey of the distribution of the epidermal melanoblasts and melanocytes in the mouse during fetal and postnatal periods. Anat. Rec. 208, 589594.
  • Hoek, K.S., Schlegel, N.C., Brafford, P. et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 19, 290302.
  • Hoek, K.S., Eichhoff, O.M., Schlegel, N.C., Dobbeling, U., Kobert, N., Schaerer, L., Hemmi, S., and Dummer, R. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 68, 650656.
  • Holbrook, K.A., Underwood, R.A., Vogel, A.M., Gown, A.M., and Kimball, H. (1989). The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by the anti-melanoma monoclonal antibody, HMB-45. Anat. Embryol. (Berl). 180, 443455.
  • Hong, C.-S., and Saint-Jeannet, J.-P. (2005). Sox proteins and neural crest development. Semin. Cell Dev. Biol. 16, 694703.
  • Hou, L., Arnheiter, H., and Pavan, W.J. (2006). Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Proc. Natl. Acad. Sci. USA 103, 90819085.
  • Huber, W.E., Price, E.R., Widlund, H.R., Du, J., Davis, I.J., Wegner, M., and Fisher, D.E. (2003). A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 278, 4522445230.
  • Inoue, K., Tanabe, Y., and Lupski, J.R. (1999). Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann. Neurol. 46, 313318.
  • Inoue, K., Shilo, K., Boerkoel, C.F., Crowe, C., Sawady, J., Lupski, J.R., and Agamanolis, D.P. (2002). Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg–Hirschsprung disease: phenotypes linked by SOX10 mutation. Ann. Neurol. 52, 836842.
  • Inoue, K., Khajavi, M., Ohyama, T. et al. (2004). Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat. Genet. 36, 361369.
  • Iso, M., Fukami, M., Horikawa, R., Azuma, N., Kawashiro, N., and Ogata, T. (2008). SOX10 mutation in Waardenburg syndrome type II. Am. J. Med. Genet. A. 146A, 21622163.
  • Iwamoto, K., Bundo, M., Yamada, K., Takao, H., Iwayama, Y., Yoshikawa, T., and Kato, T. (2006). A family-based and case–control association study of SOX10 in schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 141B, 477481.
  • Jiao, Z., Mollaaghababa, R., Pavan, W.J., Antonellis, A., Green, E.D., and Hornyak, T.J. (2004). Direct interaction of sox10 with the promoter of murine dopachrome tautomerase (dct) and synergistic activation of dct expression with mitf. Pigment Cell Res. 17, 352362.
  • Kamachi, Y., Uchikawa, M., and Kondoh, H. (2000). Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 16, 182187.
  • Kellerer, S., Schreiner, S., Stolt, C.C., Scholz, S., Bosl, M.R., and Wegner, M. (2006). Replacement of the Sox10 transcription factor by Sox8 reveals incomplete functional equivalence. Development 133, 28752886.
  • Kelsh, R.N., and Eisen, J.S. (2000). The zebrafish colourless gene regulates development of non-ectomesenchymal neural crest derivatives. Development 127, 515525.
  • Kelsh, R.N., Harris, M.L., Colanesi, S., and Erickson, C.A. (2009). Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates. Semin. Cell Dev. Biol. 20, 90104.
  • Kiefer, J. (2007). Back to basics: Sox genes. Dev. Dyn. 236, 23562366.
  • Kim, J., Lo, L., Dormand, E., and Anderson, D.J. (2003). SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 1731.
  • Kondoh, H., and Kamachi, Y. (2009). SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int. J. Biochem. Cell Biol. 42, 391399.
  • Krahl, D., and Sellheyer, K. (2009). Sox9, more than a marker of the outer root sheath: spatiotemporal expression pattern during human cutaneous embryogenesis. J. Cutan. Pathol. 37, 350356.
  • Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I., and Wegner, M. (1998). Sox10, a novel transcriptional modulator in glial cells. J. Neurosci. 18, 237250.
  • Lane, P.W., and Liu, H.M. (1984). Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J. Hered. 75, 435439.
  • Lang, D., and Epstein, J.A. (2003). Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum. Mol. Genet. 12, 937945.
  • Lang, D., Lu, M., Huang, L., Engleka, K., Zhang, M., Chu, E., Lipner, S., Skoultchi, A., Millar, S., and Epstein, J. (2005). Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433, 884887.
  • Le Douarin, N.M., and Kalcheim, C. (1999). The Neural Crest, 2nd edn. (Cambridge: Cambridge University Press).
  • LeBlanc, S.E., Ward, R.M., and Svaren, J. (2007). Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol. Cell. Biol. 27, 35213529.
  • Lee, M., Goodall, J., Verastegui, C., Ballotti, R., and Goding, C.R. (2000). Direct regulation of the microphthalmia promoter by Sox10 links Waardenburg–Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J. Biol. Chem. 275, 3797837983.
  • Lee, K.E., Nam, S., Cho, E.A., Seong, I., Limb, J.K., Lee, S., and Kim, J. (2008). Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation. BMC Genomics 9, 408.
  • Lister, J.A., Robertson, C.P., Lepage, T., Johnson, S.L., and Raible, D.W. (1999). nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126, 37573767.
  • Ludwig, A., Rehberg, S., and Wegner, M. (2004). Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett. 556, 236244.
  • Malki, S., Nef, S., Notarnicola, C., Thevenet, L., Gasca, S., Mejean, C., Berta, P., Poulat, F., and Boizet-Bonhoure, B. (2005). Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. EMBO J. 24, 17981809.
  • Matera, I., Watkins-Chow, D.E., Loftus, S.K., Hou, L., Incao, A., Silver, D.L., Rivas, C., Elliott, E.C., Baxter, L.L., and Pavan, W.J. (2008). A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Hum. Mol. Genet. 17, 21182131.
  • Mayer, T.C. (1973). The migratory pathway of neural crest cells into the skin of mouse embryos. Dev. Biol. 34, 3946.
  • McKeown, S.J., Lee, V.M., Bronner-Fraser, M., Newgreen, D.F., and Farlie, P.G. (2005). Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev. Dyn. 233, 430444.
  • Morais da Silva, S., Hacker, A., Harley, V., Goodfellow, P., Swain, A., and Lovell-Badge, R. (1996). Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat. Genet. 14, 6268.
  • Mori-Akiyama, Y., Akiyama, H., Rowitch, D.H., and de Crombrugghe, B. (2003). Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc. Natl. Acad. Sci. USA 100, 93609365.
  • Morin, M., Vinuela, A., Rivera, T., Villamar, M., Moreno-Pelayo, M.A., Moreno, F., and del Castillo, I. (2008). A de novo missense mutation in the gene encoding the SOX10 transcription factor in a Spanish sporadic case of Waardenburg syndrome type IV. Am. J. Med. Genet. A. 146A, 10321037.
  • Mou, Z., Tapper, A.R., and Gardner, P.D. (2009). The armadillo-repeat-containing protein, ARMCX3, physically and functionally interacts with the developmental regulatory factor Sox10. J. Biol. Chem. 284, 1362913640.
  • Murisier, F., Guichard, S., and Beermann, F. (2006). A conserved transcriptional enhancer that specifies Tyrp1 expression to melanocytes. Dev. Biol. 298, 644655.
  • Murisier, F., Guichard, S., and Beermann, F. (2007). The tyrosinase enhancer is activated by Sox10 and Mitf in mouse melanocytes. Pigment Cell Res. 20, 173184.
  • Nakayama, A., Nguyen, M.T., Chen, C.C., Opdecamp, K., Hodgkinson, C.A., and Arnheiter, H. (1998). Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech. Dev. 70, 155166.
  • Nishimura, E.K., Jordan, S.A., Oshima, H., Yoshida, H., Osawa, M., Moriyama, M., Jackson, I.J., Barrandon, Y., Miyachi, Y., and Nishikawa, S. (2002). Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854860.
  • Opdecamp, K., Nakayama, A., Nguyen, M.T., Hodgkinson, C.A., Pavan, W.J., and Arnheiter, H. (1997). Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124, 23772386.
  • Osawa, M., Egawa, G., Mak, S.S., Moriyama, M., Freter, R., Yonetani, S., Beermann, F., and Nishikawa, S. (2005). Molecular characterization of melanocyte stem cells in their niche. Development 132, 55895599.
  • Paratore, C., Goerich, D.E., Suter, U., Wegner, M., and Sommer, L. (2001). Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128, 39493961.
  • Passeron, T., Valencia, J.C., Bertolotto, C., Hoashi, T., Le Pape, E., Takahashi, K., Ballotti, R., and Hearing, V.J. (2007). SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation. Proc. Natl. Acad. Sci. USA 104, 1398413989.
  • Passeron, T., Valencia, J.C., Namiki, T., Vieira, W.D., Passeron, H., Miyamura, Y., and Hearing, V.J. (2009). Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J. Clin. Invest. 119, 954963.
  • Peirano, R.I., and Wegner, M. (2000). The glial transcription factor Sox10 binds to DNA both as monomer and dimer with different functional consequences. Nucleic Acids Res. 28, 30473055.
  • Pennisi, D., Bowles, J., Nagy, A., Muscat, G., and Koopman, P. (2000). Mice null for sox18 are viable and display a mild coat defect. Mol. Cell. Biol. 20, 93319336.
  • Pingault, V., Bondurand, N., Kuhlbrodt, K. et al. (1998). SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat. Genet. 18, 171173.
  • Pingault, V., Guiochon-Mantel, A., Bondurand, N., Faure, C., Lacroix, C., Lyonnet, S., Goossens, M., and Landrieu, P. (2000). Peripheral neuropathy with hypomyelination, chronic intestinal pseudo-obstruction and deafness: a developmental “neural crest syndrome” related to a SOX10 mutation. Ann. Neurol. 48, 671676.
  • Pingault, V., Girard, M., Bondurand, N., Dorkins, H., Van Maldergem, L., Mowat, D., Shimotake, T., Verma, I., Baumann, C., and Goossens, M. (2002). SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum. Genet. 111, 198206.
  • Pingault, V., Ente, D., Dastot-Le Moal, F., Goossens, M., Marlin, S., and Bondurand, N. (2010). Review and update of mutations causing Waardenburg syndrome. Hum. Mutat. 31, 391406.
  • Potterf, S.B., Furumura, M., Dunn, K.J., Arnheiter, H., and Pavan, W.J. (2000). Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum. Genet. 107, 16.
  • Potterf, S.B., Mollaaghababa, R., Hou, L., Southard-Smith, E.M., Hornyak, T.J., Arnheiter, H., and Pavan, W.J. (2001). Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev. Biol. 237, 245257.
  • Pusch, C., Hustert, E., Pfeifer, D., Sudbeck, P., Kist, R., Roe, B., Wang, Z., Balling, R., Blin, N., and Scherer, G. (1998). The SOX10/Sox10 gene from human and mouse: sequence, expression, and transactivation by the encoded HMG domain transcription factor. Hum. Genet. 103, 115123.
  • Qin, Y., Kong, L.K., Poirier, C., Truong, C., Overbeek, P.A., and Bishop, C.E. (2004). Long-range activation of Sox9 in odd sex (Ods) mice. Hum. Mol. Genet. 13, 12131218.
  • Quevedo, W.C., and Holstein, T.J. (2006). General biology of mammalian pigmentation. In The Pigmentary System, J.E.A., Nordland, ed. (New York: Oxford University Press), pp. 6390.
  • Rao, P., Fuller, G.N., and Prieto, V.G. (2010). Expression of Sox-9 in metastatic melanoma-a potential diagnostic pitfall. Am. J. Dermatopathol. 32, 262266.
  • Rehberg, S., Lischka, P., Glaser, G., Stamminger, T., Wegner, M., and Rosorius, O. (2002). Sox10 is an active nucleocytoplasmic shuttle protein, and shuttling is crucial for Sox10-mediated transactivation. Mol. Cell. Biol. 22, 58265834.
  • Sanchez-Mejias, A., Watanabe, Y., R, M.F., Lopez-Alonso, M., Antinolo, G., Bondurand, N., and Borrego, S. (2010). Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient. J. Mol. Med. 88, 507514.
  • de Santa Barbara, P., Moniot, B., Poulat, F., and Berta, P. (2000). Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev. Dyn. 217, 293298.
  • Schepers, G.E., Teasdale, R.D., and Koopman, P. (2002). Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev. Cell. 3, 167170.
  • Schreiner, S., Cossais, F., Fischer, K., Scholz, S., Bosl, M.R., Holtmann, B., Sendtner, M., and Wegner, M. (2007). Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development 134, 32713281.
  • Serbedzija, G.N., Bronner-Fraser, M., and Fraser, S.E. (1989). A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 106, 809816.
  • Serbedzija, G.N., Fraser, S.E., and Bronner-Fraser, M. (1990). Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108, 605612.
  • Sham, M.H., Lui, V.C., Chen, B.L., Fu, M., and Tam, P.K. (2001). Novel mutations of SOX10 suggest a dominant negative role in Waardenburg–Shah syndrome. J. Med. Genet. 38, E30.
  • Sharov, A., Tobin, D.J., Sharova, T.Y., Atoyan, R., and Botchkarev, V.A. (2005). Changes in different melanocyte populations during hair follicle involution (catagen). J. Invest. Dermatol. 125, 12591267.
  • Shimotake, T., Tanaka, S., Fukui, R., Makino, S., and Maruyama, R. (2007). Neuroglial disorders of central and peripheral nervous systems in a patient with Hirschsprung’s disease carrying allelic SOX10 truncating mutation. J. Pediatr. Surg. 42, 725731.
  • Sinner, D., Kordich, J.J., Spence, J.R., Opoka, R., Rankin, S., Lin, S.C., Jonatan, D., Zorn, A.M., and Wells, J.M. (2007). Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol. Cell. Biol. 27, 78027815.
  • Slominski, A., and Paus, R. (1993). Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J. Invest. Dermatol. 101, 90S97S.
  • Slominski, A., Paus, R., and Costantino, R. (1991). Differential expression and activity of melanogenesis-related proteins during induced hair growth in mice. J. Invest. Dermatol. 96, 172179.
  • Smit, D.J., Smith, A.G., Parsons, P.G., Muscat, G.E., and Sturm, R.A. (2000). Domains of Brn-2 that mediate homodimerization and interaction with general and melanocytic transcription factors. Eur. J. Biochem. 267, 64136422.
  • Smith, J.M., and Koopman, P.A. (2004). The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. Trends Genet. 20, 48.
  • Southard-Smith, E.M., Kos, L., and Pavan, W.J. (1998). Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 18, 6064.
  • Southard-Smith, E.M., Collins, J.E., Ellison, J.S., Smith, K.J., Baxevanis, A.D., Touchman, J.W., Green, E.D., Dunham, I., and Pavan, W.J. (1999). Comparative analyses of the dominant megacolon-SOX10 genomic interval in mouse and human. Mamm. Genome 10, 744749.
  • Spokony, R.F., Aoki, Y., Saint-Germain, N., Magner-Fink, E., and Saint-Jeannet, J.P. (2002). The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development 129, 421432.
  • Stanchina, L., Baral, V., Robert, F., Pingault, V., Lemort, N., Pachnis, V., Goossens, M., and Bondurand, N. (2006). Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development. Dev. Biol. 295, 232249.
  • Stolt, C.C., Lommes, P., Hillgärtner, S., and Wegner, M. (2008). The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucleic Acids Res. 36, 54275440.
  • Sviderskaya, E.V., Wakeling, W.F., and Bennett, D.C. (1995). A cloned, immortal line of murine melanoblasts inducible to differentiate to melanocytes. Development 121, 15471557.
  • Sznajer, Y., Coldea, C., Meire, F., Delpierre, I., Sekhara, T., and Touraine, R.L. (2008). A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease. Am. J. Med. Genet. A. 146A, 10381041.
  • Taylor, K.M., and LaBonne, C. (2005). SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev. Cell. 9, 593603.
  • Thomas, A.J., and Erickson, C.A. (2009). FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136, 18491858.
  • Toki, F., Suzuki, N., Inoue, K., Suzuki, M., Hirakata, K., Nagai, K., Kuroiwa, M., Lupski, J.R., and Tsuchida, Y. (2003). Intestinal aganglionosis associated with the Waardenburg syndrome: report of two cases and review of the literature. Pediatr. Surg. Int. 19, 725728.
  • Topol, L., Chen, W., Song, H., Day, T.F., and Yang, Y. (2009). Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J. Biol. Chem. 284, 33233333.
  • Touraine, R.L., Attie-Bitach, T., Manceau, E. et al. (2000). Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am. J. Hum. Genet. 66, 14961503.
  • Verastegui, C., Bille, K., Ortonne, J.-P., and Ballotti, R. (2000). Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J. Biol. Chem. 275, 3075730760.
  • Verheij, J.B., Sival, D.A., van der Hoeven, J.H., Vos, Y.J., Meiners, L.C., Brouwer, O.F., and van Essen, A.J. (2006). Shah–Waardenburg syndrome and PCWH associated with SOX10 mutations: a case report and review of the literature. Eur. J. Paediatr. Neurol. 10, 1117.
  • Vinuela, A., Morin, M., Villamar, M., Morera, C., Lavilla, M.J., Cavalle, L., Moreno-Pelayo, M.A., Moreno, F., and del Castillo, I. (2009). Genetic and phenotypic heterogeneity in two novel cases of Waardenburg syndrome type IV. Am. J. Med. Genet. A. 149A, 22962302.
  • Wegner, M. (2009). All purpose Sox: the many roles of Sox proteins in gene expression. Int. J. Biochem. Cell Biol. 42, 381390.
  • Weiss, M.A. (2001). Floppy SOX: mutual induced fit in hmg (high-mobility group) box-DNA recognition. Mol. Endocrinol. 15, 353362.
  • Werner, M.H., and Burley, S.K. (1997). Architectural transcription factors: proteins that remodel DNA. Cell 88, 733736.
  • Werner, M.H., Huth, J.R., Gronenborn, A.M., and Clore, G.M. (1995). Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81, 705714.
  • Werner, T., Hammer, A., Wahlbuhl, M., Bösl, M. R., and Wegner, M. (2007). Multiple conserved regulatory elements with overlapping functions determine Sox10 expression in mouse embryogenesis. Nucleic Acids Res. 35, 65266538.
  • Wissmuller, S., Kosian, T., Wolf, M., Finzsch, M., and Wegner, M. (2006). The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Res. 34, 17351744.
  • Yan, Y.L., Willoughby, J., Liu, D., Crump, J.G., Wilson, C., Miller, C.T., Singer, A., Kimmel, C., Westerfield, M., and Postlethwait, J.H. (2005). A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development 132, 10691083.
  • Yokoyama, S., Takeda, K., and Shibahara, S. (2006). SOX10, in combination with Sp1, regulates the endothelin receptor type B gene in human melanocyte lineage cells. FEBS J. 273, 18051820.
  • Zhu, S., Wurdak, H., Wang, Y. et al. (2009a). A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proc. Natl. Acad. Sci. USA 106, 1702517030.
  • Zhu, Y.T., Jia, Y., Hu, L., Qi, C., Prasad, M.K., McCallion, A.S., and Zhu, Y.J. (2009b). PBP is essential for the growth of active Notch4-immortalized mammary epithelial cells by activating SOX10 expression. Biochem. J. 425, 435444.