SEARCH

SEARCH BY CITATION

References

  • Abdallah, P., Luciano, P., Runge, K.W., Lisby, M., Geli, V., Gilson, E., and Teixeira, M.T. (2009). A two-step model for senescence triggered by a single critically short telomere. Nat. Cell Biol. 11, 988993.
  • Ackermann, J., Frutschi, M., Kaloulis, K., McKee, T., Trumpp, A., and Beermann, F. (2005). Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 65, 40054011.
  • Acosta, J.C., O’Loghlen, A., Banito, A. et al. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 10061018.
  • d’Adda di Fagagna, F. (2008). Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512522.
  • Adhikary, S., Marinoni, F., Hock, A. et al. (2005). The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123, 409421.
  • Alexiadis, V., Waldmann, T., Andersen, J., Mann, M., Knippers, R., and Gruss, C. (2000). The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev. 14, 13081312.
  • Angkeow, P., Deshpande, S.S., Qi, B., Liu, Y.X., Park, Y.C., Jeon, B.H., Ozaki, M., and Irani, K. (2002). Redox factor-1: an extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ. 9, 717725.
  • Bailet, O., Fenouille, N., Abbe, P. et al. (2009). Spleen tyrosine kinase functions as a tumor suppressor in melanoma cells by inducing senescence-like growth arrest. Cancer Res. 69, 27482756.
  • Bandyopadhyay, D., and Medrano, E.E. (2000). Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1. Ann. N Y Acad. Sci. 908, 7184.
  • Bandyopadhyay, D., Okan, N.A., Bales, E., Nascimento, L., Cole, P.A., and Medrano, E.E. (2002). Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res. 62, 62316239.
  • Bandyopadhyay, D., Curry, J.L., Lin, Q., Richards, H.W., Chen, D., Hornsby, P.J., Timchenko, N.A., and Medrano, E.E. (2007). Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell 6, 577591.
  • Bardeesy, N., Bastian, B.C., Hezel, A., Pinkel, D., DePinho, R.A., and Chin, L. (2001). Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol. Cell. Biol. 21, 21442153.
  • Bardeesy, N., Kim, M., Xu, J., Kim, R.S., Shen, Q., Bosenberg, M.W., Wong, W.H., and Chin, L. (2005). Role of epidermal growth factor receptor signaling in RAS-driven melanoma. Mol. Cell. Biol. 25, 41764188.
  • Bartek, J., Lukas, J., and Bartkova, J. (2007). DNA damage response as an anti-cancer barrier: damage threshold and the concept of ‘conditional haploinsufficiency’. Cell Cycle 6, 23442347.
  • Bastian, B.C. (2003). Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer. Oncogene 22, 30813086.
  • Beausejour, C.M., Krtolica, A., Galimi, F., Narita, M., Lowe, S.W., Yaswen, P., and Campisi, J. (2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 42124222.
  • Bennett, D.C. (2003). Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22, 30633069.
  • Bennett, D.C. (2008). How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res. 21, 2738.
  • Bennett, D.C., and Medrano, E.E. (2002). Molecular regulation of melanocyte senescence. Pigment Cell Res. 15, 242250.
  • Ben-Porath, I., and Weinberg, R.A. (2005). The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961976.
  • Bevona, C., Goggins, W., Quinn, T., Fullerton, J., and Tsao, H. (2003). Cutaneous melanomas associated with nevi. Arch. Dermatol. 139, 16201624; discussion 1624.
  • Biroccio, A., Amodei, S., Antonelli, A., Benassi, B., and Zupi, G. (2003). Inhibition of c-Myc oncoprotein limits the growth of human melanoma cells by inducing cellular crisis. J. Biol. Chem. 278, 3569335701.
  • Braig, M., Lee, S., Loddenkemper, C., Rudolph, C., Peters, A.H., Schlegelberger, B., Stein, H., Dorken, B., Jenuwein, T., and Schmitt, C.A. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660665.
  • Brummelkamp, T.R., Kortlever, R.M., Lingbeek, M., Trettel, F., MacDonald, M.E., van Lohuizen, M., and Bernards, R. (2002). TBX-3, the gene mutated in Ulnar-Mammary Syndrome, is a negative regulator of p19ARF and inhibits senescence. J. Biol. Chem. 277, 65676572.
  • Carreira, S., Liu, B., and Goding, C.R. (2000). The gene encoding the T-box factor Tbx2 is a target for the microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 275, 2192021927.
  • Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K.S., Testori, A., Larue, L., and Goding, C.R. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 20, 34263439.
  • Carro, M.S., Spiga, F.M., Quarto, M., Di Ninni, V., Volorio, S., Alcalay, M., and Muller, H. (2006). DEK Expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle 5, 12021207.
  • Cheli, Y., Ohanna, M., Ballotti, R., and Bertolotto, C. (2010). Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 23, 2740.
  • Chen, Z., Trotman, L.C., Shaffer, D. et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725730.
  • Chin, L., Pomerantz, J., Polsky, D., Jacobson, M., Cohen, C., Cordon-Cardo, C., Horner 2nd, J.W., and DePinho, R.A. (1997). Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 11, 28222834.
  • Collado, M., Gil, J., Efeyan, A. et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436, 642.
  • Coopman, P.J., Do, M.T., Barth, M. et al. (2000). The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 406, 742747.
  • Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99118.
  • Cozzi, S.J., Parsons, P.G., Ogbourne, S.M., Pedley, J., and Boyle, G.M. (2006). Induction of senescence in diterpene ester-treated melanoma cells via protein kinase C-dependent hyperactivation of the mitogen-activated protein kinase pathway. Cancer Res. 66, 1008310091.
  • Cronin, J.C., Wunderlich, J., Loftus, S.K. et al. (2009). Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res. 22, 435444.
  • Dankort, D., Curley, D.P., Cartlidge, R.A., Nelson, B., Karnezis, A.N., Damsky Jr, W.E., You, M.J., DePinho, R.A., McMahon, M., and Bosenberg, M. (2009). Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544552.
  • Davis, E., Teng, H., Bilican, B., Parker, M.I., Liu, B., Carriera, S., Goding, C.R., and Prince, S. (2008). Ectopic Tbx2 expression results in polyploidy and cisplatin resistance. Oncogene 27, 976984.
  • Delmas, V., Beermann, F., Martinozzi, S. et al. (2007). Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 29232935.
  • Denoyelle, C., Abou-Rjaily, G., Bezrookove, V. et al. (2006). Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat. Cell Biol. 8, 10531063.
  • Dhomen, N., Reis-Filho, J.S., da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., Larue, L., Pritchard, C., and Marais, R. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294303.
  • Di Micco, R., Fumagalli, M., Cicalese, A. et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638642.
  • Felsher, D.W., and Bishop, J.M. (1999). Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. U S A 96, 39403944.
  • Freedberg, D.E., Rigas, S.H., Russak, J. et al. (2008). Frequent p16-independent inactivation of p14ARF in human melanoma. J. Natl Cancer Inst. 100, 784795.
  • Freund, A., Orjalo, A.V., Desprez, P.Y., and Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238246.
  • Gamble, M.J., and Fisher, R.P. (2007). SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat. Struct. Mol. Biol. 14, 548555.
  • Garraway, L.A., Widlund, H.R., Rubin, M.A. et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117122.
  • Gartel, A.L., and Shchors, K. (2003). Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp. Cell Res. 283, 1721.
  • Giuliano, S., Cheli, Y., Ohanna, M. et al. (2010). Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Res. 70, 38133822.
  • Goel, V.K., Ibrahim, N., Jiang, G., Singhal, M., Fee, S., Flotte, T., Westmoreland, S., Haluska, F.S., Hinds, P.W., and Haluska, F.G. (2009). Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28, 22892298.
  • Goldstein, A.M., Chan, M., Harland, M. et al. (2006). High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 66, 98189828.
  • Goodall, J., Wellbrock, C., Dexter, T.J., Roberts, K., Marais, R., and Goding, C.R. (2004). The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol. Cell. Biol. 24, 29232931.
  • Goodall, J., Carreira, S., Denat, L., Kobi, D., Davidson, I., Nuciforo, P., Sturm, R.A., Larue, L., and Goding, C.R. (2008). Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 68, 77887794.
  • Gray-Schopfer, V.C., Cheong, S.C., Chong, H., Chow, J., Moss, T., Abdel-Malek, Z.A., Marais, R., Wynford-Thomas, D., and Bennett, D.C. (2006). Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br. J. Cancer 95, 496505.
  • Gruber, S.B., Barnhill, R.L., Stenn, K.S., and Roush, G.C. (1989). Nevomelanocytic proliferations in association with cutaneous malignant melanoma: a multivariate analysis. J. Am. Acad. Dermatol. 21, 773780.
  • Guney, I., Wu, S., and Sedivy, J.M. (2006). Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc. Natl Acad. Sci. U S A 103, 36453650.
  • Ha, L., Ichikawa, T., Anver, M. et al. (2007). ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc. Natl Acad. Sci. U S A 104, 1096810973.
  • Ha, L., Merlino, G., and Sviderskaya, E.V. (2008). Melanomagenesis: overcoming the barrier of melanocyte senescence. Cell Cycle 7, 19441948.
  • Haferkamp, S., Becker, T.M., Scurr, L.L., Kefford, R.F., and Rizos, H. (2008). p16INK4a-induced senescence is disabled by melanoma-associated mutations. Aging Cell 7, 733745.
  • Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585621.
  • Heo, J.Y., Jing, K., Song, K.S. et al. (2009). Downregulation of APE1/Ref-1 is involved in the senescence of mesenchymal stem cells. Stem Cells 27, 14551462.
  • Hirose, Y., Berger, M.S., and Pieper, R.O. (2001). p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res. 61, 19571963.
  • Ho, J.S., Ma, W., Mao, D.Y., and Benchimol, S. (2005). p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol. Cell. Biol. 25, 74237431.
  • Hoek, K., Rimm, D.L., Williams, K.R. et al. (2004). Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 64, 52705282.
  • Hoeller, C., Thallinger, C., Pratscher, B., Bister, M.D., Schicher, N., Loewe, R., Heere-Ress, E., Roka, F., Sexl, V., and Pehamberger, H. (2005). The non-receptor-associated tyrosine kinase Syk is a regulator of metastatic behavior in human melanoma cells. J. Invest. Dermatol. 124, 12931299.
  • Hoogaars, W.M., Barnett, P., Rodriguez, M., Clout, D.E., Moorman, A.F., Goding, C.R., and Christoffels, V.M. (2008). TBX3 and its splice variant TBX3+  exon 2a are functionally similar. Pigment Cell Melanoma Res. 21, 379387.
  • Hussein, M.R., Haemel, A.K., and Wood, G.S. (2003). p53-related pathways and the molecular pathogenesis of melanoma. Eur. J. Cancer Prev. 12, 93100.
  • Inamdar, G.S., Madhunapantula, S.V., and Robertson, G.P. (2010). Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem. Pharmacol. 80, 624637.
  • Ismail, A., and Bateman, A. (2009). Expression of TBX2 promotes anchorage-independent growth and survival in the p53-negative SW13 adrenocortical carcinoma. Cancer Lett. 278, 230240.
  • Jacobs, J.J., Keblusek, P., Robanus-Maandag, E. et al. (2000). Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat. Genet. 26, 291299.
  • Jane-Valbuena, J., Widlund, H.R., Perner, S. et al. (2010). An oncogenic role for ETV1 in melanoma. Cancer Res. 70, 20752084.
  • Jones, R., Ruas, M., Gregory, F., Moulin, S., Delia, D., Manoukian, S., Rowe, J., Brookes, S., and Peters, G. (2007). A CDKN2A mutation in familial melanoma that abrogates binding of p16INK4a to CDK4 but not CDK6. Cancer Res. 67, 91349141.
  • Kamijo, T., Zindy, F., Roussel, M.F., Quelle, D.E., Downing, J.R., Ashmun, R.A., Grosveld, G., and Sherr, C.J. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649659.
  • Kannengiesser, C., Brookes, S., del Arroyo, A.G. et al. (2009). Functional, structural, and genetic evaluation of 20 CDKN2A germ line mutations identified in melanoma-prone families or patients. Hum. Mutat. 30, 564574.
  • Kappes, F., Fahrer, J., Khodadoust, M.S., Tabbert, A., Strasser, C., Mor-Vaknin, N., Moreno-Villanueva, M., Burkle, A., Markovitz, D.M., and Ferrando-May, E. (2008). DEK is a poly(ADP-ribose) acceptor in apoptosis and mediates resistance to genotoxic stress. Mol. Cell. Biol. 28, 32453257.
  • Khodadoust, M.S., Verhaegen, M., Kappes, F., Riveiro-Falkenbach, E., Cigudosa, J.C., Kim, D.S., Chinnaiyan, A.M., Markovitz, D.M., and Soengas, M.S. (2009). Melanoma proliferation and chemoresistance controlled by the DEK oncogene. Cancer Res. 69, 64056413.
  • King, R., Googe, P.B., Weilbaecher, K.N., Mihm Jr, M.C., and Fisher, D.E. (2001). Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. Am. J. Surg. Pathol. 25, 5157.
  • Krizhanovsky, V., Yon, M., Dickins, R.A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., and Lowe, S.W. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657667.
  • Kuilman, T., Michaloglou, C., Vredeveld, L.C., Douma, S., van Doorn, R., Desmet, C.J., Aarden, L.A., Mooi, W.J., and Peeper, D.S. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 10191031.
  • Kurz, D.J., Decary, S., Hong, Y., and Erusalimsky, J.D. (2000). Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113(Pt 20), 36133622.
  • Lazzerini Denchi, E., Attwool, C., Pasini, D., and Helin, K. (2005). Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol. Biol. Cell 25, 26602672.
  • Lee, B.Y., Han, J.A., Im, J.S., Morrone, A., Johung, K., Goodwin, E.C., Kleijer, W.J., DiMaio, D., and Hwang, E.S. (2006). Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187195.
  • Leikam, C., Hufnagel, A., Schartl, M., and Meierjohann, S. (2008). Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene 27, 70707082.
  • Lewis, D.A., Yi, Q., Travers, J.B., and Spandau, D.F. (2008). UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol. Biol. Cell 19, 13461353.
  • Liang, J., and Slingerland, J.M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2, 339345.
  • von Lindern, M., van Baal, S., Wiegant, J., Raap, A., Hagemeijer, A., and Grosveld, G. (1992). Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: characterization of the set gene. Mol. Cell. Biol. 12, 33463355.
  • Liu, F., Fu, Y., and Meyskens Jr, F.L. (2009). MiTF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref-1. J. Invest. Dermatol. 129, 422431.
  • Lodygin, D., Menssen, A., and Hermeking, H. (2002). Induction of the Cdk inhibitor p21 by LY83583 inhibits tumor cell proliferation in a p53-independent manner. J. Clin. Invest. 110, 17171727.
  • Mahabeleshwar, G.H., and Kundu, G.C. (2003). Syk, a protein-tyrosine kinase, suppresses the cell motility and nuclear factor kappa B-mediated secretion of urokinase type plasminogen activator by inhibiting the phosphatidylinositol 3′-kinase activity in breast cancer cells. J. Biol. Chem. 278, 62096221.
  • Mallette, F.A., Gaumont-Leclerc, M.F., and Ferbeyre, G. (2007). The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev. 21, 4348.
  • Mhaidat, N.M., Zhang, X.D., Allen, J., Avery-Kiejda, K.A., Scott, R.J., and Hersey, P. (2007). Temozolomide induces senescence but not apoptosis in human melanoma cells. Br. J. Cancer 97, 12251233.
  • Michaloglou, C., Vredeveld, L.C., Soengas, M.S., Denoyelle, C., Kuilman, T., van der Horst, C.M., Majoor, D.M., Shay, J.W., Mooi, W.J., and Peeper, D.S. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720724.
  • Michaloglou, C., Vredeveld, L.C., Mooi, W.J., and Peeper, D.S. (2008). BRAF(E600) in benign and malignant human tumours. Oncogene 27, 877895.
  • Mishra, P.J., Ha, L., Rieker, J., Sviderskaya, E.V., Bennett, D.C., Oberst, M.D., Kelly, K., and Merlino, G. (2010). Dissection of RAS downstream pathways in melanomagenesis: a role for Ral in transformation. Oncogene 29, 24492456.
  • Mocsai, A., Ruland, J., and Tybulewicz, V.L. (2010). The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387402.
  • Muthusamy, V., Duraisamy, S., Bradbury, C.M., Hobbs, C., Curley, D.P., Nelson, B., and Bosenberg, M. (2006). Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res. 66, 1118711193.
  • Narita, M., Krizhanovsky, V., Nunez, S., Chicas, A., Hearn, S.A., Myers, M.P., and Lowe, S.W. (2006). A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126, 503514.
  • Naumann, S.C., Roos, W.P., Jost, E., Belohlavek, C., Lennerz, V., Schmidt, C.W., Christmann, M., and Kaina, B. (2009). Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53. Br. J. Cancer 100, 322333.
  • Nazarian, R.M., Prieto, V.G., Elder, D.E., and Duncan, L.M. (2010). Melanoma biomarker expression in melanocytic tumor progression: a tissue microarray study. J. Cutan. Pathol. 37(Suppl. 1), 4147.
  • Nogueira, C., Kim, K.H., Sung, H., Paraiso, K.H., Dannenberg, J.H., Bosenberg, M., Chin, L., and Kim, M. (2010). Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene. 29, 62226232.
  • Olumi, A.F., Grossfeld, G.D., Hayward, S.W., Carroll, P.R., Tlsty, T.D., and Cunha, G.R. (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 50025011.
  • Papaioannou, V.E. (2001). T-box genes in development: from hydra to humans. Int. Rev. Cytol. 207, 170.
  • Passos, J.F., Nelson, G., Wang, C. et al. (2010). Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347.
  • Patton, E.E., Widlund, H.R., Kutok, J.L. et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 15, 249254.
  • Pelengaris, S., Khan, M., and Evan, G. (2002). c-MYC: more than just a matter of life and death. Nat. Rev. Cancer 2, 764776.
  • Petti, C., Molla, A., Vegetti, C., Ferrone, S., Anichini, A., and Sensi, M. (2006). Coexpression of NRASQ61R and BRAFV600E in human melanoma cells activates senescence and increases susceptibility to cell-mediated cytotoxicity. Cancer Res. 66, 65036511.
  • te Poele, R.H., Okorokov, A.L., Jardine, L., Cummings, J., and Joel, S.P. (2002). DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 18761883.
  • Pomerantz, J., Schreiber-Agus, N., Liegeois, N.J. et al. (1998). The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2′s inhibition of p53. Cell 92, 713723.
  • Poynter, J.N., Elder, J.T., Fullen, D.R., Nair, R.P., Soengas, M.S., Johnson, T.M., Redman, B., Thomas, N.E., and Gruber, S.B. (2006). BRAF and NRAS mutations in melanoma and melanocytic nevi. Melanoma Res. 16, 267273.
  • Prince, S., Carreira, S., Vance, K.W., Abrahams, A., and Goding, C.R. (2004). Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res. 64, 16691674.
  • Rajaraman, R., Guernsey, D.L., Rajaraman, M.M., and Rajaraman, S.R. (2006). Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int. 6, 25.
  • Rastogi, S., Joshi, B., Dasgupta, P., Morris, M., Wright, K., and Chellappan, S. (2006). Prohibitin facilitates cellular senescence by recruiting specific corepressors to inhibit E2F target genes. Mol. Cell. Biol. 26, 41614171.
  • Riveiro-Falkenbach, E., and Soengas, M.S. (2010). Control of tumorigenesis and chemoresistance by the DEK oncogene. Clin. Cancer Res. 16, 29322938.
  • Ryu, S.J., Cho, K.A., Oh, Y.S., and Park, S.C. (2006). Role of Src-specific phosphorylation site on focal adhesion kinase for senescence-associated apoptosis resistance. Apoptosis 11, 303313.
  • Ryu, S.J., Oh, Y.S., and Park, S.C. (2007). Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts. Cell Death Differ. 14, 10201028.
  • Sage, J., Mulligan, G.J., Attardi, L.D., Miller, A., Chen, S., Williams, B., Theodorou, E., and Jacks, T. (2000). Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev. 14, 30373050.
  • Sarkisian, C.J., Keister, B.A., Stairs, D.B., Boxer, R.B., Moody, S.E., and Chodosh, L.A. (2007). Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 9, 493505.
  • Sauter, E.R., Yeo, U.C., von Stemm, A. et al. (2002). Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res. 62, 32003206.
  • Schmitt, C.A., Fridman, J.S., Yang, M., Lee, S., Baranov, E., Hoffman, R.M., and Lowe, S.W. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335346.
  • Schwahn, D.J., Timchenko, N.A., Shibahara, S., and Medrano, E.E. (2005). Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes. Pigment Cell Res. 18, 203213.
  • Sharpless, N.E., Ramsey, M.R., Balasubramanian, P., Castrillon, D.H., and DePinho, R.A. (2004). The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis. Oncogene 23, 379385.
  • Smalley, K.S., Lioni, M., Dalla Palma, M. et al. (2008). Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol. Cancer Ther. 7, 28762883.
  • Soares, L.M., Zanier, K., Mackereth, C., Sattler, M., and Valcarcel, J. (2006). Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK. Science 312, 19611965.
  • Soengas, M.S., and Lowe, S.W. (2003). Apoptosis and melanoma chemoresistance. Oncogene 22, 31383151.
  • Soengas, M.S., Capodieci, P., Polsky, D. et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207211.
  • Sotillo, R., Dubus, P., Martin, J., de la Cueva, E., Ortega, S., Malumbres, M., and Barbacid, M. (2001). Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J. 20, 66376647.
  • Soufir, N., Avril, M.F., Chompret, A., Demenais, F., Bombled, J., Spatz, A., Stoppa-Lyonnet, D., Benard, J., and Bressac-de Paillerets, B. (1998). Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum. Mol. Genet. 7, 209216.
  • Steinert, S., Shay, J.W., and Wright, W.E. (2000). Transient expression of human telomerase extends the life span of normal human fibroblasts. Biochem. Biophys. Res. Commun. 273, 10951098.
  • Strub, T., Giuliano, S., Ye, T. et al. (in press). Essential role of Microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene.
  • Sviderskaya, E.V., Hill, S.P., Evans-Whipp, T.J., Chin, L., Orlow, S.J., Easty, D.J., Cheong, S.C., Beach, D., DePinho, R.A., and Bennett, D.C. (2002). p16(Ink4a) in melanocyte senescence and differentiation. J. Natl Cancer Inst. 94, 446454.
  • Sviderskaya, E.V., Gray-Schopfer, V.C., Hill, S.P. et al. (2003). p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression. J. Natl Cancer Inst. 95, 723732.
  • Tada, M., and Smith, J.C. (2001). T-targets: clues to understanding the functions of T-box proteins. Dev. Growth Differ. 43, 111.
  • Terzian, T., Torchia, E.C., Dai, D. et al. (2010). p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell Melanoma Res23,781794.
  • Vance, K.W., Carreira, S., Brosch, G., and Goding, C.R. (2005). Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Cancer Res. 65, 22602268.
  • Veal, E.A., Day, A.M., and Morgan, B.A. (2007). Hydrogen peroxide sensing and signaling. Mol. Cell 26, 114.
  • Waldmann, T., Scholten, I., Kappes, F., Hu, H.G., and Knippers, R. (2004). The DEK protein – an abundant and ubiquitous constituent of mammalian chromatin. Gene 343, 19.
  • Wang, S., Ding, Y.B., Chen, G.Y., Xia, J.G., and Wu, Z.Y. (2004). Hypermethylation of Syk gene in promoter region associated with oncogenesis and metastasis of gastric carcinoma. World J. Gastroenterol. 10, 18151818.
  • Wang, H., Mannava, S., Grachtchouk, V., Zhuang, D., Soengas, M.S., Gudkov, A.V., Prochownik, E.V., and Nikiforov, M.A. (2008). c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27, 19051915.
  • Wellbrock, C., and Schartl, M. (1999). Multiple binding sites in the growth factor receptor Xmrk mediate binding to p59fyn, GRB2 and Shc. Eur. J. Biochem. 260, 275283.
  • Wellbrock, C., Rana, S., Paterson, H., Pickersgill, H., Brummelkamp, T., and Marais, R. (2008). Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS ONE 3, e2734.
  • Willis-Martinez, D., Richards, H.W., Timchenko, N.A., and Medrano, E.E. (2010). Role of HDAC1 in senescence, aging, and cancer. Exp. Gerontol. 45, 279285.
  • Wise-Draper, T.M., Allen, H.V., Thobe, M.N., Jones, E.E., Habash, K.B., Munger, K., and Wells, S.I. (2005). The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J. Virol. 79, 1430914317.
  • Wise-Draper, T.M., Allen, H.V., Jones, E.E., Habash, K.B., Matsuo, H., and Wells, S.I. (2006). Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol. Cell. Biol. 26, 75067519.
  • Witt, O., Deubzer, H.E., Milde, T., and Oehme, I. (2009). HDAC family: What are the cancer relevant targets? Cancer Lett. 277, 821.
  • Wu, C.H., van Riggelen, J., Yetil, A., Fan, A.C., Bachireddy, P., and Felsher, D.W. (2007). Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc. Natl Acad. Sci. U S A 104, 1302813033.
  • Wu, Q., Li, Z., Lin, H., Han, L., Liu, S., and Lin, Z. (2008). DEK overexpression in uterine cervical cancers. Pathol. Int. 58, 378382.
  • Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., and Lowe, S.W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656660.
  • Yarosh, W., Barrientos, T., Esmailpour, T., Lin, L., Carpenter, P.M., Osann, K., Anton-Culver, H., and Huang, T. (2008). TBX3 is overexpressed in breast cancer and represses p14 ARF by interacting with histone deacetylases. Cancer Res. 68, 693699.
  • Yeo, E.J., Hwang, Y.C., Kang, C.M., Choy, H.E., and Park, S.C. (2000). Reduction of UV-induced cell death in the human senescent fibroblasts. Mol. Cells 10, 415422.
  • You, M.J., Castrillon, D.H., Bastian, B.C., O’Hagan, R.C., Bosenberg, M.W., Parsons, R., Chin, L., and DePinho, R.A. (2002). Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc. Natl Acad. Sci. U S A 99, 14551460.
  • Zaky, A., Busso, C., Izumi, T., Chattopadhyay, R., Bassiouny, A., Mitra, S., and Bhakat, K.K. (2008). Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res. 36, 15551566.
  • Zhang, S., and Yu, D. (2010). PI(3)king apart PTEN’s role in cancer. Clin. Cancer Res. 16, 43254330.
  • Zhang, Y., Xiong, Y., and Yarbrough, W.G. (1998). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92, 725734.
  • Zhu, J., Blenis, J., and Yuan, J. (2008). Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc. Natl Acad. Sci. U S A 105, 65846589.
  • Zhu, S., Wurdak, H., Wang, Y. et al. (2009). A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proc. Natl Acad. Sci. U S A 106, 1702517030.
  • Zhuang, D., Mannava, S., Grachtchouk, V. et al. (2008). c-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27, 66236634.
  • Zuo, L., Weger, J., Yang, Q., Goldstein, A.M., Tucker, M.A., Walker, G.J., Hayward, N., and Dracopoli, N.C. (1996). Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet. 12, 9799.
  • Zyss, D., Montcourrier, P., Vidal, B., Anguille, C., Merezegue, F., Sahuquet, A., Mangeat, P.H., and Coopman, P.J. (2005). The Syk tyrosine kinase localizes to the centrosomes and negatively affects mitotic progression. Cancer Res. 65, 1087210880.