SEARCH

SEARCH BY CITATION

References

  • Aikawa, J., and Esko, J.D. (1999). Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase family. J. Biol. Chem. 274, 26902695.
  • Aikawa, T., Whipple, C.A., Lopez, M.E., Gunn, J., Young, A., Lander, A.D., and Korc, M. (2008). Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J. Clin. Invest. 118, 8999.
  • Andres, J.L., Stanley, K., Cheifetz, S., and Massague, J. (1989). Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta. J. Cell Biol. 109(Pt 1), 31373145.
  • Andres, J.L., DeFalcis, D., Noda, M., and Massague, J. (1992). Binding of two growth factor families to separate domains of the proteoglycan betaglycan. J. Biol. Chem. 267, 59275930.
  • Aono, S., Keino, H., Ono, T., Yasuda, Y., Tokita, Y., Matsui, F., Taniguchi, M., Sonta, S., and Oohira, A. (2000). Genomic organization and expression pattern of mouse neuroglycan C in the cerebellar development. J. Biol. Chem. 275, 337342.
  • Arvatz, G., Shafat, I., Levy-Adam, F., Ilan, N., and Vlodavsky, I. (2011). The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev. 30, 253268.
  • Baasanjav, S., Al-Gazali, L., Hashiguchi, T. et al. (2011). Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am. J. Hum. Genet. 89, 1527.
  • Bai, S., Thomas, C., and Ahsan, F. (2007). Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J. Pharm. Sci. 96, 20902106.
  • Baljinnyam, E., Iwatsubo, K., Kurotani, R., Wang, X., Ulucan, C., Iwatsubo, M., Lagunoff, D., and Ishikawa, Y. (2009). Epac increases melanoma cell migration by a heparan sulfate-related mechanism. Am. J. Physiol. Cell Physiol. 297, C802C813.
  • Belting, M., Borsig, L., Fuster, M.M., Brown, J.R., Persson, L., Fransson, L.A., and Esko, J.D. (2002). Tumor attenuation by combined heparan sulfate and polyamine depletion. Proc. Natl. Acad. Sci. USA 99, 371376.
  • Bernfield, M., Kokenyesi, R., Kato, M., Hinkes, M.T., Spring, J., Gallo, R.L., and Lose, E.J. (1992). Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365393.
  • Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., and Zako, M. (1999). Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729777.
  • Birch, M.A., and Skerry, T.M. (1999). Differential regulation of syndecan expression by osteosarcoma cell lines in response to cytokines but not osteotropic hormones. Bone 24, 571578.
  • Bishop, J.R., Schuksz, M., and Esko, J.D. (2007). Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 10301037.
  • Bret, C., Moreaux, J., Schved, J.F., Hose, D., and Klein, B. (2011). SULFs in human neoplasia: implication as progression and prognosis factors. J. Transl. Med. 9, 72.
  • Brule, S., Friand, V., Sutton, A., Baleux, F., Gattegno, L., and Charnaux, N. (2009). Glycosaminoglycans and syndecan-4 are involved in SDF-1/CXCL12-mediated invasion of human epitheloid carcinoma HeLa cells. Biochim. Biophys. Acta 1790, 16431650.
  • Burbach, B.J., Ji, Y., and Rapraeger, A.C. (2004). Syndecan-1 ectodomain regulates matrix-dependent signaling in human breast carcinoma cells. Exp. Cell Res. 300, 234247.
  • Camilli, T.C., Xu, M., O’Connell, M.P., Chien, B., Frank, B.P., Subaran, S., Indig, F.E., Morin, P.J., Hewitt, S.M., and Weeraratna, A.T. (2011). Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility. Pigment Cell Melanoma Res. 24, 175186.
  • Campoli, M., Ferrone, S., and Wang, X. (2010). Functional and clinical relevance of chondroitin sulfate proteoglycan 4. Adv. Cancer Res. 109, 73121.
  • Capurro, M.I., Xu, P., Shi, W., Li, F., Jia, A., and Filmus, J. (2008). Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev. Cell 14, 700711.
  • Carey, D.J. (1997). Syndecans: multifunctional cell-surface co-receptors. Biochem. J. 327(Pt 1), 116.
  • Carvallo, L., Munoz, R., Bustos, F., Escobedo, N., Carrasco, H., Olivares, G., and Larrain, J. (2010). Non-canonical Wnt signaling induces ubiquitination and degradation of Syndecan 4. J. Biol. Chem. 285, 2954629555.
  • Cha, S.K., Ortega, B., Kurosu, H., Rosenblatt, K.P., Kuro, O.M., and Huang, C.L. (2008). Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc. Natl. Acad. Sci. USA 105, 98059810.
  • Chalkiadaki, G., Nikitovic, D., Berdiaki, A., Sifaki, M., Krasagakis, K., Katonis, P., Karamanos, N.K., and Tzanakakis, G.N. (2009). Fibroblast growth factor-2 modulates melanoma adhesion and migration through a syndecan-4-dependent mechanism. Int. J. Biochem. Cell Biol. 41, 13231331.
  • Chang, Q., Hoefs, S., van der Kemp, A.W., Topala, C.N., Bindels, R.J., and Hoenderop, J.G. (2005). The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310, 490493.
  • Charni, F., Friand, V., Haddad, O., Hlawaty, H., Martin, L., Vassy, R., Oudar, O., Gattegno, L., Charnaux, N., and Sutton, A. (2009). Syndecan-1 and syndecan-4 are involved in RANTES/CCL5-induced migration and invasion of human hepatoma cells. Biochim. Biophys. Acta 1790, 13141326.
  • Chen, R.L., and Lander, A.D. (2001). Mechanisms underlying preferential assembly of heparan sulfate on glypican-1. J. Biol. Chem. 276, 75077517.
  • Chen, K., Liu, M.L., Schaffer, L., Li, M., Boden, G., Wu, X., and Williams, K.J. (2010). Type 2 diabetes in mice induces hepatic overexpression of sulfatase 2, a novel factor that suppresses uptake of remnant lipoproteins. Hepatology 52, 19571967.
  • Chien, A.J., Moore, E.C., Lonsdorf, A.S., Kulikauskas, R.M., Rothberg, B.G., Berger, A.J., Major, M.B., Hwang, S.T., Rimm, D.L., and Moon, R.T. (2009). Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl. Acad. Sci. USA 106, 11931198.
  • Choi, S., Clements, D.J., Pophristic, V., Ivanov, I., Vemparala, S., Bennett, J.S., Klein, M.L., Winkler, J.D., and DeGrado, W.F. (2005). The design and evaluation of heparin-binding foldamers. Angew. Chem. Int. Ed. Engl. 44, 66856689.
  • David, G., Lories, V., Decock, B., Marynen, P., Cassiman, J.J., and Van den Berghe, H. (1990). Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J. Cell Biol. 111(Pt 2), 31653176.
  • De Cat, B., and David, G. (2001). Developmental roles of the glypicans. Semin. Cell Dev. Biol. 12, 117125.
  • Dieudonne, F.X., Marion, A., Hay, E., Marie, P.J., and Modrowski, D. (2010). High Wnt signaling represses the proapoptotic proteoglycan syndecan-2 in osteosarcoma cells. Cancer Res. 70, 53995408.
  • Dissanayake, S.K., and Weeraratna, A.T. (2008). Detecting PKC phosphorylation as part of the Wnt/calcium pathway in cutaneous melanoma. Methods Mol. Biol. 468, 157172.
  • Dissanayake, S.K., Wade, M., Johnson, C.E. et al. (2007). The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem. 282, 1725917271.
  • Echtermeyer, F., Bertrand, J., Dreier, R. et al. (2009). Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 10721076.
  • Engbring, J.A., Hoffman, M.P., Karmand, A.J., and Kleinman, H.K. (2002). The B16F10 cell receptor for a metastasis-promoting site on laminin-1 is a heparan sulfate/chondroitin sulfate-containing proteoglycan. Cancer Res. 62, 35493554.
  • Esko, J.D., and Selleck, S.B. (2002). Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435471.
  • Filmus, J., Capurro, M., and Rast, J. (2008). Glypicans. Genome Biol. 9, 224.
  • Fransson, L.A. (2003). Glypicans. Int. J. Biochem. Cell Biol. 35, 125129.
  • Fromm, J.R., Hileman, R.E., Weiler, J.M., and Linhardt, R.J. (1997). Interaction of fibroblast growth factor-1 and related peptides with heparan sulfate and its oligosaccharides. Arch. Biochem. Biophys. 346, 252262.
  • Fuster, M.M., Wang, L., Castagnola, J. et al. (2007). Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J. Cell Biol. 177, 539549.
  • Gutsche, C.D. (1989). Calixarenes (Cambridge: Royal Society of Chemistry).
  • Hameetman, L., David, G., Yavas, A., White, S.J., Taminiau, A.H., Cleton-Jansen, A.M., Hogendoorn, P.C., and Bovee, J.V. (2007). Decreased EXT expression and intracellular accumulation of heparan sulphate proteoglycan in osteochondromas and peripheral chondrosarcomas. J. Pathol. 211, 399409.
  • Hasengaowa, Kodama, J., Kusumoto, T., Shinyo, Y., Seki, N., and Hiramatsu, Y. (2005). Prognostic significance of syndecan-1 expression in human endometrial cancer. Ann. Oncol. 16, 11091115.
  • Hayashi, K., Hayashi, M., Jalkanen, M., Firestone, J.H., Trelstad, R.L., and Bernfield, M. (1987). Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study. J. Histochem. Cytochem. 35, 10791088.
  • Herndon, M.E., Stipp, C.S., and Lander, A.D. (1999). Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding. Glycobiology 9, 143155.
  • Hershkovitz, O., Jivov, S., Bloushtain, N., Zilka, A., Landau, G., Bar-Ilan, A., Lichtenstein, R.G., Campbell, K.S., van Kuppevelt, T.H., and Porgador, A. (2007). Characterization of the recognition of tumor cells by the natural cytotoxicity receptor, NKp44. Biochemistry 46, 74267436.
  • Ho, M., and Kim, H. (2011). Glypican-3: a new target for cancer immunotherapy. Eur. J. Cancer 47, 333338.
  • Hoek, K.S., Eichhoff, O.M., Schlegel, N.C., Dobbeling, U., Kobert, N., Schaerer, L., Hemmi, S., and Dummer, R. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 68, 650656.
  • Honsova, E., Lodererova, A., Frankova, S., Oliverius, M., and Trunecka, P. (2011). Glypican-3 immunostaining significantly improves histological diagnosis of hepatocellular carcinoma. Cas. Lek. Cesk. 150, 3740.
  • Hovingh, P., and Linker, A. (1970). The enzymatic degradation of heparin and heparitin sulfate. 3. Purification of a heparitinase and a heparinase from flavobacteria. J. Biol. Chem. 245, 61706175.
  • Hulett, M.D., Freeman, C., Hamdorf, B.J., Baker, R.T., Harris, M.J., and Parish, C.R. (1999). Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat. Med. 5, 803809.
  • Ikuta, Y., Nakatsura, T., Kageshita, T., Fukushima, S., Ito, S., Wakamatsu, K., Baba, H., and Nishimura, Y. (2005). Highly sensitive detection of melanoma at an early stage based on the increased serum secreted protein acidic and rich in cysteine and glypican-3 levels. Clin. Cancer Res. 11, 80798088.
  • Iozzo, R.V. (2005). Basement membrane proteoglycans: from cellar to ceiling. Nat. Rev. Mol. Cell Biol. 6, 646656.
  • Kainulainen, V., Wang, H., Schick, C., and Bernfield, M. (1998). Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J. Biol. Chem. 273, 1156311569.
  • Kandil, D., Leiman, G., Allegretta, M., and Evans, M. (2009). Glypican-3 protein expression in primary and metastatic melanoma: a combined immunohistochemistry and immunocytochemistry study. Cancer 117, 271278.
  • Karumanchi, S.A., Jha, V., Ramchandran, R. et al. (2001). Cell surface glypicans are low-affinity endostatin receptors. Mol. Cell 7, 811822.
  • Kato, M., Wang, H., Kainulainen, V., Fitzgerald, M.L., Ledbetter, S., Ornitz, D.M., and Bernfield, M. (1998). Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat. Med. 4, 691697.
  • Kirsch, T., Koyama, E., Liu, M., Golub, E.E., and Pacifici, M. (2002). Syndecan-3 is a selective regulator of chondrocyte proliferation. J. Biol. Chem. 277, 4217142177.
  • Kisilevsky, R., Szarek, W.A., Ancsin, J., Vohra, R., Li, Z., and Marone, S. (2004). Novel glycosaminoglycan precursors as antiamyloid agents: Part IV. J. Mol. Neurosci. 24, 167172.
  • Kleeff, J., Ishiwata, T., Kumbasar, A., Friess, H., Buchler, M.W., Lander, A.D., and Korc, M. (1998). The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J. Clin. Invest. 102, 16621673.
  • Konduri, S.D., Tasiou, A., Chandrasekar, N., Nicolson, G.L., and Rao, J.S. (2000). Role of tissue factor pathway inhibitor-2 (TFPI-2). in amelanotic melanoma (C-32) invasion. Clin. Exp. Metastasis 18, 303308.
  • Kosher, R.A. (1998). Syndecan-3 in limb skeletal development. Microsc. Res. Tech. 43, 123130.
  • Kurosu, H., Ogawa, Y., Miyoshi, M. et al. (2006). Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281, 61206123.
  • Lai, J.P., Sandhu, D.S., Yu, C. et al. (2008). Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 47, 12111222.
  • Lai, J.P., Sandhu, D.S., Yu, C. et al. (2010). Sulfatase 2 protects hepatocellular carcinoma cells against apoptosis induced by the PI3K inhibitor LY294002 and ERK and JNK kinase inhibitors. Liver Int. 30, 15221528.
  • Latysheva, N., Muratov, G., Rajesh, S., Padgett, M., Hotchin, N.A., Overduin, M., and Berditchevski, F. (2006). Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol. Cell. Biol. 26, 77077718.
  • Lee, J.H., Park, H., Chung, H. et al. (2009). Syndecan-2 regulates the migratory potential of melanoma cells. J. Biol. Chem. 284, 2716727175.
  • Lee, H., Kim, Y., Choi, Y., Choi, S., Hong, E., and Oh, E.S. (2011). Syndecan-2 cytoplasmic domain regulates colon cancer cell migration via interaction with syntenin-1. Biochem. Biophys. Res. Commun. 409, 148153.
  • Lendorf, M.E., Manon-Jensen, T., Kronqvist, P., Multhaupt, H.A., and Couchman, J.R. (2011). Syndecan-1 and syndecan-4 are independent indicators in breast carcinoma. J. Histochem. Cytochem. 59, 615629.
  • Li, J., Hagner-McWhirter, A., Kjellen, L., Palgi, J., Jalkanen, M., and Lindahl, U. (1997). Biosynthesis of heparin/heparan sulfate. cDNA cloning and expression of D-glucuronyl C5-epimerase from bovine lung. J. Biol. Chem. 272, 2815828163.
  • Li, F., Shi, W., Capurro, M., and Filmus, J. (2011). Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling. J. Cell Biol. 192, 691704.
  • Lin, Y.L., Lei, Y.T., Hong, C.J., and Hsueh, Y.P. (2007). Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. J. Cell Biol. 177, 829841.
  • Lindahl, U., and Li, J.P. (2009). Interactions between heparan sulfate and proteins-design and functional implications. Int. Rev. Cell Mol. Biol. 276, 105159.
  • Liu, D., Shriver, Z., Venkataraman, G., El Shabrawi, Y., and Sasisekharan, R. (2002). Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc. Natl. Acad. Sci. USA 99, 568573.
  • Lugemwa, F.N., Sarkar, A.K., and Esko, J.D. (1996). Unusual beta-D-xylosides that prime glycosaminoglycans in animal cells. J. Biol. Chem. 271, 1915919165.
  • Luo, W., Wang, X., Kageshita, T., Wakasugi, S., Karpf, A.R., and Ferrone, S. (2006). Regulation of high molecular weight-melanoma associated antigen (HMW-MAA). gene expression by promoter DNA methylation in human melanoma cells. Oncogene 25, 28732884.
  • Mani, K., Havsmark, B., Persson, S. et al. (1998). Heparan/chondroitin/dermatan sulfate primer 2-(6-hydroxynaphthyl)-O-beta-D-xylopyranoside preferentially inhibits growth of transformed cells. Cancer Res. 58, 10991104.
  • Martin, N.B., Masson, P., Sepulchre, C., Theveniaux, J., Millet, J., and Bellamy, F. (1996). Pharmacologic and biochemical profiles of new venous antithrombotic beta-D-xyloside derivatives: potential antiathero/thrombotic drugs. Semin. Thromb. Hemost. 22, 247254.
  • Matsui, Y., Ikesue, M., Danzaki, K., Morimoto, J., Sato, M., Tanaka, S., Kojima, T., Tsutsui, H., and Uede, T. (2011). Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction. Circ. Res. 108, 13281339.
  • Mecca, T., Consoli, G.M., Geraci, C., La Spina, R., and Cunsolo, F. (2006). Polycationic calix[8]arenes able to recognize and neutralize heparin. Org. Biomol. Chem. 4, 37633768.
  • Munesue, S., Yoshitomi, Y., Kusano, Y. et al. (2007). A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J. Biol. Chem. 282, 2816428174.
  • Murry, B.P., Greiter-Wilke, A., Paulsen, D.P., Hiatt, K.M., Beltrami, C.A., and Marchetti, D. (2005). Selective heparanase localization in malignant melanoma. Int. J. Oncol. 26, 345352.
  • Nakatsura, T., and Nishimura, Y. (2005). Usefulness of the novel oncofetal antigen glypican-3 for diagnosis of hepatocellular carcinoma and melanoma. BioDrugs 19, 7177.
  • Nikitovic, D., Assouti, M., Sifaki, M., Katonis, P., Krasagakis, K., Karamanos, N.K., and Tzanakakis, G.N. (2008). Chondroitin sulfate and heparan sulfate-containing proteoglycans are both partners and targets of basic fibroblast growth factor-mediated proliferation in human metastatic melanoma cell lines. Int. J. Biochem. Cell Biol. 40, 7283.
  • Norgard-Sumnicht, K., and Varki, A. (1995). Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J. Biol. Chem. 270, 1201212024.
  • O’Connell, M.P., Fiori, J.L., Baugher, K.M. et al. (2009a). Wnt5A activates the calpain-mediated cleavage of filamin A. J. Invest. Dermatol. 129, 17821789.
  • O’Connell, M.P., Fiori, J.L., Kershner, E.K., Frank, B.P., Indig, F.E., Taub, D.D., Hoek, K.S., and Weeraratna, A.T. (2009b). Heparan sulfate proteoglycan modulation of Wnt5A signal transduction in metastatic melanoma cells. J. Biol. Chem. 284, 2870428712.
  • O’Connell, M.P., Fiori, J.L., Xu, M. et al. (2010). The orphan tyrosine kinase receptor, ROR2, mediates Wnt5A signaling in metastatic melanoma. Oncogene 29, 3444.
  • Orellana, A., Hirschberg, C.B., Wei, Z., Swiedler, S.J., and Ishihara, M. (1994). Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J. Biol. Chem. 269, 22702276.
  • Pearson, A.G., Kiefel, M.J., Ferro, V., and von Itzstein, M. (2011). Synthesis of simple heparanase substrates. Org. Biomol. Chem. 9, 46144625.
  • Penc, S.F., Pomahac, B., Eriksson, E., Detmar, M., and Gallo, R.L. (1999). Dermatan sulfate activates nuclear factor-kappab and induces endothelial and circulating intercellular adhesion molecule-1. J. Clin. Invest. 103, 13291335.
  • Pluschke, G., Vanek, M., Evans, A., Dittmar, T., Schmid, P., Itin, P., Filardo, E.J., and Reisfeld, R.A. (1996). Molecular cloning of a human melanoma-associated chondroitin sulfate proteoglycan. Proc. Natl. Acad. Sci. USA 93, 97109715.
  • Rapraeger, A.C. (2001). Molecular interactions of syndecans during development. Semin. Cell Dev. Biol. 12, 107116.
  • Rapraeger, A., Jalkanen, M., and Bernfield, M. (1986). Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J. Cell Biol. 103(Pt 2), 26832696.
  • Reiland, J., Sanderson, R.D., Waguespack, M., Barker, S.A., Long, R., Carson, D.D., and Marchetti, D. (2004). Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J. Biol. Chem. 279, 80478055.
  • Reiland, J., Kempf, D., Roy, M., Denkins, Y., and Marchetti, D. (2006). FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells. Neoplasia 8, 596606.
  • Ridgway, L.D., Wetzel, M.D., and Marchetti, D. (2010). Modulation of GEF-H1 induced signaling by heparanase in brain metastatic melanoma cells. J. Cell. Biochem. 111, 12991309.
  • Roy, M., and Marchetti, D. (2009). Cell surface heparan sulfate released by heparanase promotes melanoma cell migration and angiogenesis. J. Cell. Biochem. 106, 200209.
  • Schmidt, P., Kopecky, C., Hombach, A., Zigrino, P., Mauch, C., and Abken, H. (2011). Eradication of melanomas by targeted elimination of a minor subset of tumor cells. Proc. Natl. Acad. Sci. USA 108, 24742479.
  • Schuksz, M., Fuster, M.M., Brown, J.R., Crawford, B.E., Ditto, D.P., Lawrence, R., Glass, C.A., Wang, L., Tor, Y., and Esko, J.D. (2008). Surfen, a small molecule antagonist of heparan sulfate. Proc. Natl. Acad. Sci. USA 105, 1307513080.
  • Seykora, J.T., Jih, D., Elenitsas, R., Horng, W.H., and Elder, D.E. (2003). Gene expression profiling of melanocytic lesions. Am. J. Dermatopathol. 25, 611.
  • Simons, K., and Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 3139.
  • Sloand, E.M., Kessler, C.M., McIntosh, C.L., and Klein, H.G. (1989). Methylene blue for neutralization of heparin. Thromb. Res. 54, 677686.
  • Song, H.H., Shi, W., Xiang, Y.Y., and Filmus, J. (2005). The loss of glypican-3 induces alterations in Wnt signaling. J. Biol. Chem. 280, 21162125.
  • Strunz, C.M., Matsuda, M., Salemi, V.M., Nogueira, A., Mansur, A.P., Cestari, I.N., and Marquezini, M.V. (2011). Changes in cardiac heparan sulfate proteoglycan expression and streptozotocin-induced diastolic dysfunction in rats. Cardiovasc. Diabetol. 10, 35.
  • Su, G., Blaine, S.A., Qiao, D., and Friedl, A. (2007). Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J. Biol. Chem. 282, 1490614915.
  • Subramanian, S.V., Fitzgerald, M.L., and Bernfield, M. (1997). Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J. Biol. Chem. 272, 1471314720.
  • Sun, X., Mosher, D.F., and Rapraeger, A. (1989). Heparan sulfate-mediated binding of epithelial cell surface proteoglycan to thrombospondin. J. Biol. Chem. 264, 28852889.
  • Suzuki, M., Sugimoto, K., Tanaka, J. et al. (2010). Up-regulation of glypican-3 in human hepatocellular carcinoma. Anticancer Res. 30, 50555061.
  • Talhaoui, I., Bui, C., Oriol, R., Mulliert, G., Gulberti, S., Netter, P., Coughtrie, M.W., Ouzzine, M., and Fournel-Gigleux, S. (2010). Identification of key functional residues in the active site of human {beta}1,4-galactosyltransferase 7: a major enzyme in the glycosaminoglycan synthesis pathway. J. Biol. Chem. 285, 3734237358.
  • Tohyama, O., Imura, A., Iwano, A., Freund, J.N., Henrissat, B., Fujimori, T., and Nabeshima, Y. (2004). Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J. Biol. Chem. 279, 97779784.
  • Tumova, S., Woods, A., and Couchman, J.R. (2000). Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int. J. Biochem. Cell Biol. 32, 269288.
  • Vlodavsky, I., Friedmann, Y., Elkin, M. et al. (1999). Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat. Med. 5, 793802.
  • Wang, J., and Rabenstein, D.L. (2006). Interaction of heparin with two synthetic peptides that neutralize the anticoagulant activity of heparin. Biochemistry 45, 1574015747.
  • Wang, J.B., Zhang, Y.J., Guan, J., Zhou, L., Sheng, Y., Zhang, Y., and Si, Y.F. (2011a). Enhanced syndecan-1 expression on neutrophils in patients with type 2 diabetes mellitus. Acta Diabetol. doi: 10.1007/s00592-011-0265-1.
  • Wang, Z., Telci, D., and Griffin, M. (2011b). Importance of syndecan-4 and syndecan-2 in osteoblast cell adhesion and survival mediated by a tissue transglutaminase–fibronectin complex. Exp. Cell Res. 317, 367381.
  • Weeraratna, A.T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., and Trent, J.M. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279288.
  • Weng, T., and Liu, L. (2010). The role of pleiotrophin and beta-catenin in fetal lung development. Respir. Res. 11, 80.
  • Whiteford, J.R., Xian, X., Chaussade, C., Vanhaesebroeck, B., Nourshargh, S., and Couchman, J.R. (2011). Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Mol. Biol. Cell, 22, 36093624.
  • Woods, A., and Couchman, J.R. (1994). Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol. Biol. Cell 5, 183192.
  • Wright, A.T., Zhong, Z., and Anslyn, E.V. (2005). A functional assay for heparin in serum using a designed synthetic receptor. Angew. Chem. Int. Ed. Engl. 44, 56795682.
  • Wu, H., Barusevicius, A., Babb, J., Klein-Szanto, A., Godwin, A., Elenitsas, R., Gelfand, J.M., Lessin, S., and Seykora, J.T. (2005). Pleiotrophin expression correlates with melanocytic tumor progression and metastatic potential. J. Cutan. Pathol. 32, 125130.
  • Wu, Y., Belenkaya, T.Y., and Lin, X. (2010). Dual roles of Drosophila glypican Dally-like in Wingless/Wnt signaling and distribution. Methods Enzymol. 480, 3350.
  • Yan, D., and Lin, X. (2009). Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. 1, a002493.
  • Yang, Y., MacLeod, V., Dai, Y. et al. (2007). The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 110, 20412048.
  • Yang, J., Price, M.A., Li, G.Y., Bar-Eli, M., Salgia, R., Jagedeeswaran, R., Carlson, J.H., Ferrone, S., Turley, E.A., and McCarthy, J.B. (2009). Melanoma proteoglycan modifies gene expression to stimulate tumor cell motility, growth, and epithelial-to-mesenchymal transition. Cancer Res. 69, 75387547.
  • Zak, B.M., Crawford, B.E., and Esko, J.D. (2002). Hereditary multiple exostoses and heparan sulfate polymerization. Biochim. Biophys. Acta 1573, 346355.
  • Zhang, J., Riverst, G., Zhu, Y. et al. (2001). Identification of inhibitors of heparin-growth factor interactions from combinatorial libraries of four-component condensation reactions. Bioorg. Med. Chem. 9, 825836.
  • Zhou, H., Roy, S., Cochran, E. et al. (2011). M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS ONE 6, e21106.
  • Zimmermann, P., and David, G. (1999). The syndecans, tuners of transmembrane signaling. FASEB J. 13(Suppl), S91S100.
  • Zou, Z.Q., Ding, Y.P., Long, B., Yuh, J.G., Xu, A.L., Lang, Z.W., Zou, S.Y., Liu, Y.D., Ding, K., and Li, Y.Y. (2010). Gpc-3 is a notable diagnostic, prognostic and a latent targeted therapy marker in hepatocellular carcinoma. Hepatogastroenterology 57, 12851290.