SEARCH

SEARCH BY CITATION

References

  • Bedogni, B., and Powell, M.B. (2006). Skin hypoxia: a promoting environmental factor in melanomagenesis. Cell Cycle 5, 12581261.
  • Bertolesi, G.E., Shi, C., Elbaum, L., Jollimore, C., Rozenberg, G., Barnes, S., and Kelly, M.E. (2002). The Ca2+ channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol. Pharmacol. 62, 210219.
  • Chiou, W.F. (2006). Effect of Abeta exposure on the mRNA expression patterns of voltage-sensitive calcium channel alpha 1 subunits (alpha 1A-alpha 1D) in human SK-N-SH neuroblastoma. Neurochem. Int. 49, 256261.
  • Chuang, R.S., Jaffe, H., Cribbs, L., Perez-Reyes, E., and Swartz, K.J. (1998). Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat. Neurosci. 1, 668674.
  • Cox, J.L., Lancaster, T., and Carlson, C.G. (2002). Changes in the motility of B16F10 melanoma cells induced by alterations in resting calcium influx. Melanoma Res. 12, 211219.
  • Del Toro, R., Levitsky, K.L., López-Barneo, J., and Chiara, M.D. (2003). Induction of T-type calcium channel gene expression by chronic hypoxia. J. Biol. Chem. 278, 2231622324.
  • Deli, T., Varga, N., Adám, A. et al. (2007). Functional genomics of calcium channels in human melanoma cells. Int. J. Cancer 121, 5565.
  • Evans, R.M., and Zamponi, G.W. (2006). Presynaptic calcium channels – integration centers for neuronal signaling pathways. Trends Neurosci. 29, 617624.
  • Eyden, B., Pandit, D., and Banerjee, S.S. (2005). Malignant melanoma with neuroendocrine differentiation: clinical, histological, immunohistochemical and ultrastructural features of three cases. Histopathology 47, 402409.
  • Glass-Marmor, L., Penso, J., and Beitner, R. (1992). Ca2+-induced changes in energy metabolism and viability of melanoma cells. Br. J. Cancer 81, 219224.
  • Gray, L.S., and Macdonald, T.L. (2006). The pharmacology and regulation of T type calcium channels: new opportunities for unique therapeutics for cancer. Cell Calcium 40, 115120.
  • Guo, W., Kamiya, K., Kodama, I., and Toyama, J. (1998). Cell cycle-related changes in the voltage-gated calcium currents in cultured newborn rat ventricular myocytes. J. Mol. Cell. Cardiol. 30, 10951103.
  • Jacob, R. (1990). Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J. Physiol. (Lond.) 421, 5577.
  • Kahl, C.R., and Means, A.R. (2003). Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev. 24, 719736.
  • Kaku, U., Lee, T.S., Arita, M., Hadama, T., and Ono, K. (2003). The gating and conductance properties of Cav3.2 low-voltage-activated T-type calcium channels. Jpn. J. Physiol. 53, 165172.
  • Koschak, A., Reimer, D., Huber, I., Grabner, M., Glossmann, H., Engel, J., and Striessnig, J. (2001). Alpha 1D (Cav1.3) subunits can form l-type calcium channels activating at negative voltages. J. Biol. Chem. 276, 2210022106.
  • Kuga, T., Kobayashi, S., Hirakawa, Y., Kanaide, H., and Takeshita, A. (1996). Cell cycle-dependent expression of L- and T-type calcium currents in rat aortic smooth muscle cells in primary culture. Circ. Res. 79, 1419.
  • Kwong, L., Chin, L., and Wagner, S.N. (2007). Growth factors and oncogenes as targets in melanoma: lost in translation?. Adv. Dermatol. 23, 99129.
  • Li, M., Zhang, M., Huang, L., Zhou, J., Zhuang, H., Taylor, J.T., Keyser, B.M., and Whitehurst, M.J.R. (2005). T-type calcium channels are involved in high glucose-induced rat neonatal cardiomyocyte proliferation. Pediatr. Res. 57, 550556.
  • Lipscombe, D., Helton, T.D., and Xu, W. (2004). L-type calcium channels: the low down. J. Neurophysiol. 92, 26332641.
  • Loechner, K.J., Salmon, W.C., Fu, J., Patel, S., and McLaughlin, J.T. (2009). Cell cycle-dependent localization of voltage-dependent calcium channels and the mitotic apparatus in a neuroendocrine cell line (AtT-20). Int. J. Cell Biol. 487959, 112.
  • Marcantoni, A., Baldelli, P., Hernandez-Guijo, J.M., Comunanza, V., Carabelli, V., and Carbone, E. (2007). L-type Ca2+ channels in adrenal chromaffin cells: role in pace-making and secretion. Cell Calcium 42, 397408.
  • Mariot, P., Vanoverberghe, K., Lalevee, N., Rossier, M.F., and Prevarskaya, N. (2002). Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J. Biol. Chem. 277, 1082410833.
  • Martinez-Alonso, M., Llecha, N., Mayorga, M.E. et al. (2009). Expression of somatostatin receptors in human melanoma cell lines: effect of two different somatostatin analogues, octreotide and SOM230, on cell proliferation. J. Int. Med. Res. 37, 18131822.
  • Mayorga, M.E., Sanchis, D., Perez de Santos, A.M. et al. (2006). Antiproliferative effect of STI571 on cultured human cutaneous melanoma-derived cell lines. Melanoma Res. 16, 127135.
  • Panner, A., and Wurster, R.D. (2006). T-type calcium channels and tumour proliferation. Cell Calcium 40, 253259.
  • Pereverzev, A., Vajna, R., Pfitzer, G., Hescheler, J., Klöckner, U., and Schneider, T. (2002). Reduction of insulin secretion in the insulinoma cell line INS-1 by overexpression of a Ca(v)2.3 (alpha1E) calcium channel antisense cassette. Eur. J. Endocrinol. 146, 881889.
  • Pluteanu, F., and Cribbs, L.L. (2009). T-type calcium channels are regulated by hypoxia/reoxygenation in ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 297, H1304H1313.
  • Richard, S., Neveu, D., Carnac, G., Bodin, P., Travo, P., and Nargeot, J. (1992). Differential expression of voltage-gated calcium-currents in cultivated aortic myocytes. Biochim. Biophys. Acta 1160, 95104.
  • Schmitt, R., Clozel, J.P., Iberg, N., and Bühler, F.R. (1995). Mibefradil prevents neointima formation after vascular injury in rats. Possible role of the blockade of the T-type voltage-operated calcium channel. Arterioscler. Thromb. Vasc. Biol. 15, 11611165.
  • Silver, D.L., and Pavan, W.J. (2006). The origin and development of neural crest-derived melanocytes. In Melanocytes to Melanoma, Vol. I, V.J. Hearing, and S.P. Leong, eds. (Totowa, NJ: Humana Press), pp. 326.
  • Slomisnky, A. (2009). Neuroendocrine activity of the melanocyte. Exp. Dermatol. 18, 760763.
  • Sorolla, A., Yeramian, A., Dolcet, X. et al. (2008). Effect of proteasome inhibitors on proliferation and apoptosis of human cutaneous melanoma-derived cell lines. Br. J. Dermatol. 158, 496504.
  • Taylor, J.T., Huang, L., Pottle, J.E., Liu, K., Yang, Y., Zeng, X., Keyser, B.M., Agrawal, K.C., Hansen, J.B., and Li, M. (2008a). Selective blockade of T-type calcium channels suppresses human breast cancer cell proliferation. Cancer Lett. 267, 116124.
  • Taylor, J.T., Zeng, X.B., Pottle, J.E., Lee, K., Wang, A.R., Yi, S.G., Scruggs, J.A., Sikka, S.S., and Li, M. (2008b). Ca2+ signaling and T-type calcium channels in cancer cell cycling. World J. Gastroenterol. 14, 49844991.
  • Toyota, M., Ho, C., Ohe-Toyota, M., Baylin, S.B., and Issa, J.P. (1999). Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′ CpG island in human tumours. Cancer Res. 59, 45354541.
  • Triggle, D.J. (2003). 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell. Mol. Neurobiol. 23, 293303.
  • Wang, X.T., Nagaba, Y., Cross, H.S., Wrba, F., Zhang, L., and Guggino, S.E. (2000). The mRNA of L-type calcium channel elevated in colon cancer: protein distribution in normal and cancerous colon. Am. J. Pathol. 157, 15491562.
  • Williams, A., Sarkar, S., Cuddon, P. et al. (2008). Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4, 295305.
  • Wimmers, S., Coeppicus, L., Rosenthal, R., and Strauss, O. (2008). Expression profile of voltage-dependent calcium channel subunits in the human retinal pigment epithelium. Graefes Arch. Clin. Exp. Ophthalmol. 246, 685692.
  • Yeramian, A., Sorolla, A., Velasco, A. et al. (2011). Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitises melanoma cells to Bortezomib by blocking Akt pathway. Int. J. Cancer 130, 967978.