SEARCH

SEARCH BY CITATION

Species distribution modeling has been widely used to address questions related to ecology, biogeography and species conservation on global and regional scales. Here, we study palms (Arecaceae) in a tropical biodiversity hotspot (Thailand) using species distribution modeling to assess range-limiting factors and estimate distribution and diversity patterns based on a comprehensive compilation of occurrence records. We focused on palms as a model group due to their key-stone importance for ecosystem functioning and socio-economics. Different combinations of climatic, non-climatic environmental and spatial predictors were used. The most accurate models as indicated by the ‘area under the receiver operating characteristic curve’ (AUC) statistic were those that combined all predictors. The four strongest single predictors of palm species distributions were, in decreasing order of importance, 1) latitude, 2) precipitation of driest quarter, 3) annual precipitation, and 4) minimum temperature of the coldest month, suggesting rainfall patterns and latitudinal spatial constraints as the main range determinants. Overlaying the predicted distributions revealed that potential palm hotspots are situated in the provinces of Satun and Yala in southern Thailand where vast areas remain relatively open to the discovery of new palm records and perhaps even new species.