• Modeling frameworks;
  • Computer simulation;
  • Connectionist models;
  • Bayesian approaches;
  • Dynamical systems;
  • Symbolic models of cognition;
  • Hybrid models;
  • Cognitive architectures


I consider the role of cognitive modeling in cognitive science. Modeling, and the computers that enable it, are central to the field, but the role of modeling is often misunderstood. Models are not intended to capture fully the processes they attempt to elucidate. Rather, they are explorations of ideas about the nature of cognitive processes. In these explorations, simplification is essential—through simplification, the implications of the central ideas become more transparent. This is not to say that simplification has no downsides; it does, and these are discussed. I then consider several contemporary frameworks for cognitive modeling, stressing the idea that each framework is useful in its own particular ways. Increases in computer power (by a factor of about 4 million) since 1958 have enabled new modeling paradigms to emerge, but these also depend on new ways of thinking. Will new paradigms emerge again with the next 1,000-fold increase?