SEARCH

SEARCH BY CITATION

References

  • Alibali, M. W., & Goldin-Meadow, S. (1993). Gesture–speech mismatch and mechanisms of learning: What the hands reveal about a child’s state of mind. Cognitive Psychology, 25, 468523.
  • Anderson, J. A. (1977). Neural models with cognitive implications. In D.LaBerge, & S. J.Samuels (Eds.), Basic processes in reading: Perception and comprehension (pp. 2790). Hillsdale, NJ: Erlbaum.
  • Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.
  • Ashby, F. G. (1982). Deriving exact predictions from the cascade model. Psychological Review, 89, 599607.
  • Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007) Greedy layer-wise training of deep networks. In B.Schölkopf, J.Platt & T.Hoffman (Eds.), Advances in neural information processing systems (NIPS). Cambridge, MA: MIT Press.
  • Besner, D., Twilley, L., McCann, R. S., & Seergobin, K. (1990). On the connection between connectionism and data: Are a few words necessary? Psychological Review, 97, 432446.
  • Borges, J. L. (1998). On the exactitude of science. In Collected fictions, trans. A. Hurley (p. 325). London: Penguin.
  • Bringsjord, S. (2008). Declarative/logic-based cognitive models. In R.Sun (Ed.), Cambridge handbook of computational psychology (pp. 127169). New York: Cambridge University Press.
  • Broadbent, D. (1985). A question of levels: Comment on McClelland and Rumelhart. Journal of Experimental Psychology: General, 114, 189192.
  • Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills. Cognitive Science, 4, 379426.
  • Buzsaki, G., Horvath, Z., Urioste, R., Hetke, J., & Wise, K. (1992). High frequency network oscillation in the hippocampus. Science, 256, 10251027.
  • Bybee, J. (2001). Phonology and language use. New York: Cambridge University Press.
  • Bybee, J., & Slobin, D. I. (1982). Rules and schemas in the development and use of the English past tense. Language, 58, 265289.
  • Chomsky, N. (1957). Syntactic structure. The Hague: Mouton.
  • Coltheart, M., Curtis, B., Atkins, E., & Hailer, M. (1993). Models of reading aloud: Dual-route and parallel-distributed-processing approaches. Psychological Review, 100, 589608.
  • Cosmides, L. (1989). The logic of social exchange: Was natural selection shaped how humans reason? Studies with the Wason selection task. Cognition, 31, 187276.
  • Elman, J. L. (in press). On the meaning of words and dinosaur bones: Lexical knowledge without a lexicon. Cognitive Science, forthcoming.
  • Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 371.
  • Geisler, W. S., & Perry, J. S. (in press). Contour statistics in natural images: grouping across occlusions. Visual Neuroscience.
  • Gould, S. J. (1980). The panda’s thumb. New York: W. W. Norton.
  • Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In R.Sun (Ed.), Cambridge handbook of computational psychology (pp. 59100). New York: Cambridge University Press.
  • Griffiths, T. L., Steyvers, M. X., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114, 211244.
  • Grossberg, S. (1978). A theory of human memory: Self-organization and performance of sensory-motor codes,maps, and plans. In R.Rosen & F.Snell (Eds.), Progress in theoretical biology, Vol. 5 (pp. 233374), New York: Academic Press.
  • Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14, 793817.
  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504507.
  • IBM Website. (2008). 704 Data processing system. IBM Archives. Available at: http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_pp704.html. Accessed November 13, 2008.
  • Jackendoff, R. (2002). Foundations of language: Brain, meaning, grammar, evolution. Oxford, England: Oxford University Press.
  • Jackendoff, R. (2007). Linguistics in cognitive science: The state of the art. The Linguistic Review, 24, 347401.
  • Jilk, D. J., Lebiere, C., O’Reilly, R. C., & Anderson, J. R. (2008). SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence, 20, 197218.
  • Joanisse, M. F., & Seidenberg, M. S. (1999). Impairments in verb morphology after brain injury: A connectionist model. Proceedings of the National Academy of Sciences of the United States of America, 96, 75927597.
  • Kemp, C., & Tenenbaum, J. B. (2008). Structured models of semantic cognition. Commentary on Rogers and McClelland. Behavioral and Brain Sciences, 31, 717718.
  • Kemp, C., & Tenenbaum, J. B. (in press). Structured statistical models of inductive reasoning. Psychological Review, forthcoming.
  • Kuno, S. (1987). Functional syntax: Anaphora, discourse, and empathy. Chicago: University of Chicago Press.
  • Kurzweil, R. (2005). The singularity is near: When humans transcend biology. New York: Viking Penguin.
  • Kwok, K. (2003). A computational investigation into the successes and failures of semantic learning in normal humans and amnesics. Doctoral Dissertation, Department of Psychology, Carnegie Mellon University.
  • Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211240.
  • Lee, M. D., & Wagenmakers, E. J. (2005). Bayesian statistical inference in psychology: Comment on Trafimow (2003). Psychological Review, 112, 662668.
  • Van Der Maas, H. L., & Raijmakers, M. E. J. (2009). Transitions in cognitive development: Prospects and limitations of a neural dynamic approach. In J.Spencer, M. S. C.Thomas, & J. L.McClelland (Eds.), Toward a new grand theory of development: Connectionism and dynamical systems theory re-considered (pp. 229312). Oxford, England: Oxford University Press.
  • MacWhinney, B., & Leinbach, J. (1991). Implementations are not conceptualizations: Revising the verb learning model. Cognition, 40, 121157.
  • Marcus, G. F. (2001). The algebraic mind: Integrating connectionism and cognitive science. Cambridge, MA: MIT Press.
  • Marr, D. (1982). Vision. San Francisco: Freeman.
  • Massaro, D. W. (1988). Some criticisms of connectionist models of human performance. Journal of Memory and Language, 27, 213234.
  • Massaro, D. W. (1989). Testing between the TRACE model and the fuzzy logical model of speech perception. Cognitive Psychology, 21, 398421.
  • McClelland, J. L. (1979). On the time relations of mental processes: An examination of systems of processes in cascade. Psychological Review, 86, 287330.
  • McClelland, J. L. (1991). Stochastic interactive processes and the effect of context on perception. Cognitive Psychology, 23, 144.
  • McClelland, J. L. (1992). Can connectionist models discover the structure of natural language? In R.Morelli, W. M.Brown, D.Anselmi, K.Haberlandt, & D.Lloyd (Eds.), Minds, brains & computers (pp. 168189). Norwood, NJ: Ablex Publishing.
  • McClelland, J. L. (1995). A connectionist approach to knowledge and development. In T. J.Simon, & G. S.Halford (Eds.), Developing cognitive competence: New approaches to process modeling (pp. 157204). Mahwah, NJ: LEA.
  • McClelland, J. L. (1998). Connectionist models and Bayesian inference. In M.Oaksford, & N.Chater (Eds.), Rational models of cognition (pp. 2153). Oxford, England: Oxford University Press.
  • McClelland, J. L., & Bybee, J. (2007). Gradience of gradience: A reply to Jackendoff. The Linguistic Review, 24, 437455.
  • McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation: A subjective-likelihood approach to the effects of experience in recognition memory. Psychological Review, 105, 724760.
  • McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 186.
  • McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419457.
  • McClelland, J. L., & Patterson, K. (2002). Rules or connections in past-tense inflections: What does the evidence rule out? Trends in Cognitive Sciences, 6, 465472.
  • McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375407.
  • McClelland, J. L., Rumelhart, D. E., & Hinton, G. E. The appeal of parallel distributed processing. In D. E.Rumelhart, J. L.McClelland & the PDP Research Group (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vol. I, pp. 344). Cambridge, MA: MIT Press.
  • McCloskey, M. (1991). Networks and theories: The place of connectionism in cognitive science. Psychological Science, 2, 387395.
    Direct Link:
  • McCullogh, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115133.
  • Mehta, M. R., Lee, A. K., & Wilson, M. A. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. Nature, 417, 741746.
  • Minsky, M. L., & Papert, S. A. (1969). Perceptrons. Cambridge, MA: MIT Press.
  • Movellan, J. R., & McClelland, J. L. (2001). The Morton-Massaro law of information integration: Implications for models of perception. Psychological Review, 108, 113148.
  • Neisser, U. (1967). Cognitive psychology. New York: Appleton Century Croft.
  • Newell, A. (1973). You can’t play 20 questions with nature and win: Projective comments on the papers of this symposium. In W. G.Chase (Ed.), Visual information processing (pp. 283308). New York: Academic Press.
  • Newell, A. (1994). Unified theories of cognition. Cambridge, MA: Harvard University Press.
  • Oaksford, M., & Chater, N. (1996). Rational explanation of the selection task. Psychological Review, 103, 381391.
  • Perfors, A., Tenenbaum, J. T., & Regier, T. (2006). Poverty of the stimulus: A rational approach. In R.Sun (Ed.), Proceedings of the 28th annual meeting of the Cognitive Science Society, Vancouver, BC, Canada, July 26–29 (pp. 663669). Mahwah, NJ: Erlbaum.
  • Pinker, S. (1991). Rules of language. Science, 253, 530555.
  • Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73193.
  • Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56115.
  • Popper, K. (1959). The logic of scientific discovery. New York: Harper.
  • Ranzato, M., Poultney, C., Chopra, A., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. In B.Schölkopf, J.Platt, & T.Hoffman (Eds.), Advances in neural information processing systems (NIPS) (pp. 11371144). Cambridge, MA: MIT Press.
  • Van Rijn, H., Van Someren, M., & Van Der Maas, H. (2003). Modeling developmental transitions on the balance scale task. Cognitive Science, 27, 227257.
  • Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing Psychological Review, 107, 358367.
  • Roberts, S., & Sternberg, S. (1993). The meaning of additive reaction-time effects: Tests of three alternatives. In D. E.Meyer & S.Kornblum (Eds.), Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 611653). Cambridge, MA: MIT Press.
  • Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.
  • Rogers, T. T., & McClelland, J. L. (2008). Precis of Semantic Cognition, a Parallel Distributed Processing Approach. Behavioral and Brain Sciences, 31, 689749.
  • Rosenblatt, F. (1961). Principles of neurodynamics. Washington, DC: Spartan Books.
  • Rumelhart, D. E. (1977). Toward an interactive model of reading. In S.Dornic (Ed.), Attention and performance (Vol. VI, pp. 573603). Hillsdale, NJ: Erlbaum.
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In J. L.McClelland, D. E.Rumelhart, & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. I, pp. 318362). Cambridge, MA: MIT Press.
  • Rumelhart, D. E., & McClelland, J. L. (1982). An interactive activation model of context effects in letter perception: Part 2. The context enhancement effect and some tests and extensions of the model. Psychological Review, 89, 6094.
  • Rumelhart, D. E., & McClelland, J. L. (1985). Levels indeed! A response to Broadbent. Journal of Experimental Psychology: General, 114, 193197.
  • Rumelhart, D. E., & McClelland, J. L. On learning the past tenses of English verbs. In J. L.McClelland, D. E.Rumelhart, & the PDP Research Group (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vol. II, pp. 216270). Cambridge, MA: MIT Press.
  • Schapiro, A. C., & McClelland, J. L. (in press). A connectionist model of a continuous developmental transition in the balance scale task. Cognition, forthcoming.
  • Schöner, G. (2008). Dynamical systems approaches to cognition. In R.Sun (Ed.), Cambridge handbook of computational psychology (pp. 101126). New York: Cambridge University Press.
  • Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96, 523568.
  • Shepard, R. N. (1987). Towards a universal law of generalization for psychological science. Science, 237, 13171323.
  • Sibley, D. E., Kello, C. T., Plaut, D. C., & Elman, J. L. (2008). Large-scale modeling of wordform learning and representation. Cognitive Science, 32, 741754.
  • Siegler, R. S. (1976). Three aspects of cognitive development. Cognitive Psychology, 8, 481520.
  • Simon, H. (1957). Models of man. New York: Wiley.
  • Simon, H. (1991). Models of my life. New York: Basic Books.
  • Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11 (1), 123. discussion: 23–74.
  • Spencer, J. P., Thomas, M. S. C., & McClelland, J. L. (Eds.) (2009). Toward a unified theory of development: connectionism and dynamic systems theory re-considered. New York: Oxford University Press.
  • Steels, L. (2007). Fifty years of AI: From symbols to embodiment—and back. In M.Lungarella, F.Iida, J.Bongard, & R.Pfeifer (Eds.), 50 Years of artificial intelligence, essays dedicated to the 50th anniversary of artificial intelligence, LNAI 4850 (pp. 1828). Berlin: Springer-Verlag.
  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276315.
  • Sun, R. (2002). Duality of the mind. Mahwah, NJ: Erlbaum.
  • Sun, R. (2008). Introduction to computational cognitive modeling. In R.Sun (Ed.), Cambridge handbook of computational psychology (pp. 319). New York: Cambridge University Press.
  • Taatgen, N. A., & Anderson, J. A. (2008). Constraints in cognitive architectures. In R.Sun (Ed.), Cambridge handbook of computational psychology (pp. 170185). New York: Cambridge University Press.
  • Thelen, E., Schöner, G., Scheier, C., & Smith, L. B. (2001). The dynamics of embodiment: A field theory of infant perseverative reaching. Behavioural and Brain Sciences, 24, 186.
  • Thelen, E., & Smith, L. B. (1994). A dynamics systems approach to the development of perception and action. Cambridge, MA: MIT Press.
  • Thomas, M. S. C., & McClelland, J. L. (2008). Connectionist models of cognition. In R.Sun (Ed.), Cambridge handbook of computational psychology (pp. 2358). New York: Cambridge University Press.
  • Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: the leaky competing accumulator model. Psychological Review, 108, 550592.
  • Vallabha, G. K., McClelland, J. L., Pons, F., Werker, J., & Amano, S. (2007). Unsupervised learning of vowel categories from infant-directed speech. Proceedings of the National Academy of Sciences of the United States of America, 104, 1327313278.
  • Wason, F. C. (1966). Reasoning. In B. M.Foss (Ed.), New horizons in psychology (pp. 135151). Harmondsworth: Penguin.
  • Xu, F., & Tenenbaum, J. B. (2007). Word learning as Bayesian inference. Psychological Review, 114, 245272.