• Baker, C., Fillmore, C., & Lowe, J. (1998). The Berkeley FrameNet project. Proceedings of the COLING-ACL, Montreal, Canada.
  • Banko, M., & Etzioni, O. (2008). The tradeoffs between open and traditional relation extraction. Proceedings of ACL 2008: HLT (pp. 2836). Columbus, Ohio.
  • Bobrow, D. (1968). Natural language input for a computer problem-solving system. In M.Minsky (Ed.), Semantic information processing (pp. 146226). Cambridge, MA: MIT Press.
  • Bohus, D., & Horvitz, E. (2009). Open-world dialog: Challenges, directions and a prototype. Microsoft Research Technical Report MSR-TR-2009-36.
  • Breazeal, C., & Scassellati, B. (2002). Robots that imitate humans. Trends in Cognitive Science, 6, 481487.
  • Carey, S. (2009). The origin of concepts. New York: Oxford University Press.
  • Cassimatis, N., Bello, P., & Langley, P. (2008). Ability, breadth, and parsimony in computational models of higher-order cognition. Cognitive Science, 32(8), 13041322.
  • Esposito, F., Semeraro, G., Fanizzi, N., & Ferilli., S. (2000). Conceptual change in learning naive physics: The computational model as a theory revision process. In E.Lamma & P.Mello (Eds.), AI*IA99: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence 1792 (pp. 214225). Berlin: Springer.
  • Evans, T. (1968). A program for the solution of geometric-analogy intelligence test questions. In M.Minsky (Ed.), Semantic information processing (pp. 271353). Cambridge, MA: MIT Press.
  • Forbus, K. (2001). Exploring analogy in the large. In D.Gentner, K.Holyoak, & B.Kokinov (Eds.), Analogy: Perspectives from cognitive science (pp. 2358). Cambridge, MA: MIT Press.
  • Forbus, K., Riesbeck, C., Birnbaum, L., Livingston, K., Sharma, A., & Ureel, L. (2007). Integrating natural language, knowledge representation and reasoning, and analogical processing to learn by reading. Proceedings of AAAI-07: Twenty-Second Conference on Artificial Intelligence, Vancouver, BC.
  • Forbus, K., Usher, J., Lovett, A., Lockwood, K., & Wetzel, J. (2008). CogSketch: Open-domain sketch understanding for cognitive science research and for education. Eurographics Workshop on Sketch-Based Interfaces and Modeling, Anney, France.
  • Ford, K., & Hayes, P. (1998). On computational wings: Rethinking the goals of artificial intelligence. Scientific American Special Issue (Exploring Intelligence), 9(4), 7883.
  • Friedman, S., & Forbus, K. (2009). Learning naïve physics models and misconceptions. Proceedings of the 31st Annual Conference of the Cognitive Science Society, Washington, DC.
  • Gold, K., & Scassellati, B. (2009). Using probabilistic reasoning over time to self-recognize. Robotics and Autonomous Systems, 57(4), 384392.
  • Gorniak, P., & Roy, D. (2007). Situated language understanding as filtering perceived affordances. Cognitive Science, 31(2), 197231.
  • King, R., Rowland, J., Oliver, S., Young, M., Aubrey, W., Byrn, E., Liakata, M., Markham, M., Pir, P., Soldatova, L., Sparkes, A., Whelan, K., & Clare, A. (2009). The automation of science. Science, 324(5923), 8589.
  • Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2006). Extensive classifications of English verbs. Proceedings of the 12th EURALEX International Congress, Turin, Italy.
  • Lenat, B. (1995). Cyc: A large-scale investment in knowledge infrastructure. Communications of the ACM, 38(11), 3338.
  • Liu, Y., & Stone, P. (2006). Value-function-based transfer for reinforcement learning using structure-mapping. Proceedings of AAAI06 (pp. 415420) Boston, MA.
  • Matuszek, C., Witbrock, M., Kahlert, R., Cabral, J., Schneider, D., Shah, P., & Lenat, D. (2005). Searching for common sense: Populating Cyc from the web. Proceedings of AAAI05 (pp. 14301436). Mehlo Park, CA: AAAI Press.
  • Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A. (2007). BLOG: Probabilistic models with unknown objects. In L.Getoor & B.Taskar (Eds.), Statistical relational learning (pp. 373398). Cambridge, MA: MIT Press.
  • Miller, G. 1995. WordNet: A lexical database for English. Communications of the ACM, 38(11), 3941.
  • Neri, F., Saitta, L., & Tiberghien, A. (1997). Modeling conceptual change: An interdisciplinary approach. In E.Lamma & P.Mello (Eds.), AI*IA99: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence 1792 (pp. 112). Berlin: Springer.
  • Nersessian, N. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.
  • Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107136.
  • Thagard, P. (1993). Computational philosophy of science. Cambridge, MA: MIT Press.