SEARCH

SEARCH BY CITATION

References

  • Alani, H., & Brewster, C. (2006). Metrics for ranking ontologies. 4th International EON Workshop, 15th International World Wide Web Conference. New York: ACM.
  • Andrzejewski, D., Zhu, X., & Craven, M. (2009). Incorporating domain knowledge into topic modeling via Dirichlet forest priors. The 26th International Conference on Machine Learning (ICML). New York: ACM.
  • Blei, D. M., Griffiths, T. L., Jordan, M. I., & Tenenbaum, J. B. (2003). Hierarchical topic models and the nested Chinese restaurant process. In S.Thrun, L.Saul, & B.Scholkopf (Eds.), Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press.
  • Blei, D., & Jordan, M. (2003). Modeling annotated data. Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 127134). New York: ACM.
  • Blei, D., & Lafferty, J. (2006). Correlated topic models. In Y.Weiss, B.Schölkopf, & J.Platt (Eds.), Advances in Neural Information Processing Systems 18 (pp. 147154). Cambridge, MA: MIT Press.
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 9931022.
  • Boyd-Graber, D., Blei, D., & Zhu, X. (2007). A topic model for word sense disambiguation. Proceedings of the Joint Conference of Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 10241033). New York: ACM.
  • Brewster, C., Alani, H., Dasmahapatra, S., & Wilks, Y. (2004). Data driven ontology evaluation. International Conference on Language Resources and Evaluation. Paris, France.
  • Brown, P. F., deSouza, P. V., Mercer, R. L., Della Pietra, V. J., & Lai, J. C. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18(4), 467479.
  • Bundschus, M., Dejori, M., Yu, S., Tresp, V., & Kriegel, H. (2008). Statistical modeling of medical indexing processes for biomedical knowledge information discovery from text. Proceedings of the 8th International Workshop on Data Mining in Bioinformatics (BIOKDD). New York: ACM.
  • Buntine, W. L., & Jakulin, A. (2004). Applying discrete PCA in data analysis. In: M.Chickering & J.Halpern (Eds.), Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence (pp. 5966). San Francisco, CA: Morgan Kaufmann Publishers.
  • Chater, N., & Manning, C. (2006). Probabilistic models of language processing and acquisition. Trends in Cognitive Sciences, 10(7), 335344.
  • Chemudugunta, C., Holloway, A., Smyth, P., & Steyvers, M. (2008a). Modeling documents by combining semantic concepts with unsupervised statistical learning. 7th International Semantic Web Conference (pp. 229244). Berlin: Springer-Verlag.
  • Chemudugunta, C., Smyth, P., & Steyvers, M. (2008b). Combining concept hierarchies and statistical topic models. ACM 17th Conference on Information and Knowledge Management. New York: ACM.
  • Chemudugunta, C., Smyth, P., & Steyvers, M. (2008c). Text modeling using unsupervised topic models and concept hierarchies. Technical Report. Available at: http://arxiv.org/abs/0808.0973. Accessed on May 16, 2010.
  • Cutting, D. R., Karger, D., Pedersen, J. O., & Tukey, J. W. (1992). Scatter/gather: A cluster-based approach to browsing large document collections. Proceedings of the Fifteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 318329). New York: ACM Press.
  • Dennis, S. (2004). An unsupervised method for the extraction of propositional information from text. Proceedings of the National Academy of Sciences, 101, 52065213.
  • Dietz, L., & Stewart, A. (2006). Utilize probabilistic topic models to enrich knowledge bases. Proceedings of the E SWC 2006 workshop on mastering the gap: From information extraction to semantic representation.
  • Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., Rajagopalan, S., Tomkins, A., Tomlin, J., & Zien, J. (2003). SemTag and seeker: Bootstrapping the semantic web via automated semantic annotation. Proceedings of the 12th international conference on World Wide Web (pp. 178186). New York: ACM.
  • Fellbaum, C. (Ed.) (1998). WordNet, an electronic lexical database. Cambridge, MA: MIT Press.
  • Fiser, J., & Aslin, R. N. (2005). Encoding multi-element scenes: Statistical learning of visual feature hierarchies. Journal of Experimental Psychology: General, 134, 521537.
  • Foltz, P. W., Gilliam, S., & Kendall, S. (2000). Supporting content-based feedback in online writing evaluation with LSA. Interactive Learning Environments, 8, 111129.
  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis, 2nd ed. London: Chapman & Hall.
  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Science, 101, 52285235.
  • Griffiths, T. L., Steyvers, M., Blei, D. M., & Tenenbaum, J. B. (2005) Integrating topics and syntax. In L. K.Saul (Ed.), Advances in neural information processing 17 (pp. 537544). Cambridge, MA: MIT Press.
  • Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. T. (2007). Topics in semantic representation. Psychological Review, 114(2), 211244.
  • Havasi, C., Speer, R., & Alonso, J. (2007). ConceptNet 3: A flexible, multilingual semantic network for common sense knowledge. Proceedings of Recent Advances in Natural Language Processing.
  • Hofmann, T. (1999). Probabilistic latent semantic indexing. Proceedings of the 22nd Annual ACM Conference on Research and Development in Information Retrieval (pp. 5057). New York: ACM Press.
  • Ifrim, G., & Weikum, G. (2006). Transductive learning for text classification. 10th European conference on principles and practice of knowledge discovery in databases (pp. 223234). Berlin, Germany.
  • Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114, 137.
  • Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences, 105(31), 1068710692.
  • Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., & Saarela, A. (2000). Self organization of a massive document collection. IEEE Transactions on Neural Networks (Special Issue on Neural Networks for Data Mining and Knowledge Discovery), 11-3, 574585.
  • Lagus, K., Honkela, T., Kaski, S., & Kohonen, T. (1999). WEBSOM for textual data mining. Artificial Intelligence Review, 13, 56. 345–364.
  • Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240.
  • Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to latent semantic analysis. Discourse Processes, 25, 259284.
  • Lenat, D. B., & Guha, R. V. (1989). Building large knowledge-based systems: Representation and inference in the Cyc project. Reading, MA: Addison-Wesley.
  • Li, W., Blei, D., & McCallum, A. (2007). Nonparametric Bayes pachinko allocation. Conference on Uncertainty in Artificial Intelligence (UAI). Corvallis, OR: AUAI Press.
  • Maedche, A., & Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent Systems, 16(2), 7279.
  • McCallum, A., Nigam, K., & Ungar, L. H. (2000). Efficient clustering of high-dimensional data sets with application to reference matching. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 169178). New York: ACM Press.
  • McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37, 547559.
  • Mei, Q., Shen, X., & Zhai, C. (2007). Automatic labeling of multinomial topic models. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 490499). New York: ACM Press.
  • Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. J. (1990). Introduction to Word Net: An on line lexical database. International Journal of Lexicography, 3(4), 235244.
  • Mimno, D. M., Li, W., & McCallum, A. (2007). Mixtures of hierarchical topics with pachinko allocation. International Conference on Machine Learning (ICML) (pp. 633640). Corvallis, OR.
  • Minka, T. P. (2000). Estimating a Dirichlet distribution. Technical report. Cambridge, MA: Massachusetts Institute of Technology.
  • Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387391.
  • Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). The University of South Florida word association, rhyme, and word fragment norms. Available at: http://www.usf.edu/FreeAssociation/.
  • Newman, D., Chemudugunta, C., Smyth, P., & Steyvers, M. (2006). Analyzing entities and topics in news articles using statistical topic models. Springer Lecture Notes in Computer Science (LNCS) series—IEEE international conference on intelligence and security informatics. Berlin: Springer-Verlag.
  • Newport, E. L., & Aslin, R. N. (2004). Learning at a distance: I. Statistical learning of non-adjacent dependencies. Cognitive Psychology, 48, 127162.
  • Newport, E. L., Hauser, M. D., Spaepen, G., & Aslin, R. N. (2004). Learning at a distance: II. Statistical learning of non-adjacent dependencies in a non-human primate. Cognitive Psychology, 49, 85117.
  • Panton, K., Mtuszek, C., Lenat, D., Schneider, D., Witbrock, M., Siegel, N., & Shepard, B. (2006). Common sense reasoning—From Cyc to intelligent assistant. Lecture Notes in Computer Science, 3864, 131.
  • Popescul, A., Ungar, L. H., Flake, G. W., Lawrence, S., & Giles, C. L. (2000). Clustering and identifying temporal trends in document databases. In Proceedings of the IEEE Advances in Digital Libraries (pp. 173182). Los Alamitos, CA: IEEE Computer Society.
  • Roget, P. M. (1911). Roget’s thesaurus of English words and phrases. New York: Thomas Y. Crowell.
  • Ruts, W., De Deyne, S., Ameel, E., Vanpaemel, W., Verbeemen, T., & Storms, G. (2004). Flemish norm data for 13 natural concepts and 343 exemplars. Behavior Research Methods, Instruments, and Computers, 36, 506515.
  • Spiliopoulos, V., Vouros, G., & Karkaletsis, V. (2007). Mapping ontologies elements using features in a latent space. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (pp. 457460). Washington DC: IEEE Computer Society.
  • Steyvers, M., & Griffiths, T. L. (2007). Probabilistic topic models. In T.Landauer, D.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 427448). Mahwah, NJ: Erlbaum.
  • Steyvers, M., & Griffiths, T. L. (2008). Rational analysis as a link between human memory and information retrieval. In N.Chater & M.Oaksford (Eds.), The probabilistic mind: Prospects from rational models of cognition (pp. 327347). Oxford, England: Oxford University Press.
  • Steyvers, M., Smyth, P., Rosen-Zvi, M., & Griffiths, T. (2004). Probabilistic author-topic models for information discovery. In W.Kim, R.Kohavi, J.Gehrke, & W.DuMouchel (Eds.), The Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 306315). New York: ACM.
  • Teh, Y. W., Jordan, M., Beal, M., & Blei, D. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476), 15661581.
  • Wallach, H. (2006). Topic modeling: Beyond bag-of-words. In W.Cohen & A.Moore (Eds.), Proceedings of the 23rd International Conference on Machine Learning (pp. 977984). Pittsburgh, PA.
  • Wallach, H. M., Murray, I., Salakhutdinov, R., & Mimno, D. (2009). Evaluation methods for topic models. In A. P.Danyluk, L.Bottou, & M. L.Littman (Eds.), Proceeding of the 26th International Conference on Machine Learning (pp. (11051112.) New York: ACM.
  • Wang, C., Blei, D., & Heckerman, D. (2008). Continuous time dynamic topic models. In D.McAllester and A.Nicholson (Eds.), Uncertainty in artificial intelligence (pp. 579586). Corvallis, OR: AUAI Press.
  • Wei, X., & Croft, W. B. (2007). Investigating retrieval performance with manually-built topic models. Proceedings of the 8th Large-Scale Semantic Access to Content (Text, Image, Video and Sound) Conference (RIAO’07). Paris, France.
  • Yu, C., Ballard, D. H., & Aslin, R. N. (2005). The role of embodied intention in early lexical acquisition. Cognitive Science, 29, 9611005.
  • Zavitsanos, E., Paliouras, G., Vouros, G.A., & Petridis, S. (2007). Discovering subsumption hierarchies of ontology concepts for text corpora. In proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (pp.402408.) Washington, D.C.: IEEE Computer Society.