SEARCH

SEARCH BY CITATION

References

  • Andrews, M., Vigliocco, G., & Vinson, D. P. (2009). Integrating experiential and distributional data to learn semantic representations. Psychological Review, 116(3), 463498.
  • Baayen, R. H. (2001). Word frequency distributions. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Barsalou, L. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London: Series B, 358, 11771187.
  • Barsalou, L., Santos, A., Simmons, K., & Wilson, C. (2008). Language and simulation in conceptual processing. In M.de Vega, A.Glenberg, & A.Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition (pp. 245283). New York: Oxford University Press.
  • Bloom, P. (2000). How children learn the meanings of words. Cambridge, MA: MIT Press.
  • Bullinaria, J. A., & Levy, J. P. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. Behavior Research Methods, 39(3), 510526.
  • Burgess, C. (1998). From simple associations to the building blocks of language: Modeling meaning in memory with the HAL model. Behavior Research Methods, Instruments, and Computers, 30(2), 188198.
  • Burgess, C., & Lund, K. (1997). Representing abstract words and emotional connotation in a high-dimensional memory space. In M. G.Shafto & P.Langley (Eds.), Proceedings of the 19th annual conference of the cognitive science society (pp. 6166). Mahwah, NJ: Erlbaum.
  • Church, K. W., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Computational Linguistics, 16(1), 2229.
  • Connell, L., & Ramscar, M. (2001). Using distributional measures to model typicality in categorization. In J.Moore & K.Stenning (Eds.), Proceedings of the 23rd annual conference the cognitive science society (pp. 226231). Mahwah, NJ: Erlbaum.
  • Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). Journal of Experimental Psychology: General, 132(2), 163201.
  • Cree, G. S., McRae, K., & McNorgan, C. (1999). An attractor model of lexical conceptual processing: Simulating semantic priming. Cognitive Science: A Multidisciplinary Journal, 23(3), 371414.
  • Daille, B. (1996). Study and implementation of combined techniques for automatic extraction of terminology. In J.Klavans & P.Resnik (Eds.), The balancing act: Combining symbolic and statistical approaches to language (pp. 4966). Cambridge, MA: MIT Press.
  • De Deyne, S., & Storms, G. (2008). Word associations: Network and semantic properties. Behavior Research Methods, 40, 213231.
  • Dennis, S. (2005). A memory-based theory of verbal cognition. Cognitive Science, 29(2), 145193.
  • Dennis, S. (2007). How to use the LSA web site. In T. K.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 5770). Mahwah, NJ: Erlbaum.
  • Dunning, T. (1993). Accurate methods for the statistics of surprise and coincidence. Computational Linguistics, 19(1), 6174.
  • Durda, K., & Buchanan, L. (2008). WINDSORS: Windsor improved norms of distance and similarity of representations of semantics. Behavior Research Methods, 40(3), 705712.
  • Durda, K., Buchanan, L., & Caron, R. (2009). Grounding co-occurrence: Identifying features in a lexical co-occurrence model of semantic memory. Behavior Research Methods, 41, 12101223.
  • Fellbaum, C. (1998). WordNet: An electronic lexical database. Cambridge, MA: MIT Press.
  • Fenson, L., Dale, P., Reznick, S., Bates, E., Thal, D., Pethick, S., Tomasello, M., Mervis, C. B. & Stiles, J. (1994). Variability in early communicative development. Monographs of the Society for Research in Child Development, 59(5), i185.
  • Firth, J. R. (1957). A synopsis of linguistic theory, 1930–1955. In Philological Society (Great Britain) (Ed.), Studies in linguistic analysis (pp. 132). Oxford, England: Blackwell.
  • Gentner, D. (2006). Why verbs are hard to learn. In K.Hirsh-Pasek & R.Golinkoff (Eds.), Action meets word: How children learn verbs (pp. 544564). New York: Oxford University Press.
  • Gillette, J., Gleitman, H., Gleitman, L., & Lederer, A. (1999). Human simulations of vocabulary learning. Cognition, 73(2), 135176.
  • Glenberg, A., & Robertson, D. (2000). Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language, 43(3), 379401.
  • Griffiths, T. L., Steyvers, M., Blei, D. M., & Tenenbaum, J. B. (2005). Integrating topics and syntax. Advances in Neural Information Processing Systems, 17, 537544.
  • Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114(2), 211244.
  • Harris, Z. (1970). Distributional structure. In Papers in structural and transformational linguistics (pp. 775794). Dordrecht, The Netherlands: D. Reidel Publishing Company.
  • Howell, S., Jankowicz, D., & Becker, S. (2005). A model of grounded language acquisition: Sensorimotor features improve lexical and grammatical learning. Journal of Memory and Language, 53(2), 258276.
  • Hummell, J.E., & Holyoak, K.J. (2003). A symbolic-connectionist theory of relational inference and generalization. Psychological Review, 110, 220264.
  • Jankowicz, D. (2005). Modeling category-specific deficits using topographic, corpus-derived representations. Unpublished PhD Thesis, McMaster University.
  • Johns, B. T., & Jones, M. N. (2009). Simulating false recall as an integration of semantic search and recognition. In N.Taatgen, H.van Rijn, L.Schomaker, & J.Nerbonne (Eds.), Proceedings of the 31st annual conference of the cognitive science society (pp. 25112516). Austin, TX: Cognitive Science Society.
  • Jones, M. N., Kintsch, W., & Mewhort, D. J. K. (2006). High-dimensional semantic space accounts of priming. Journal of Memory and Language, 55(4), 534552.
  • Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114(1), 137.
  • Jurafsky, D., & Martin, J. (2008). Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition (2nd ed.). Engelwood Cliff, NJ: Prentice Hall.
  • Kanerva, P., Kristoferson, J., & Holst, A. (2000). Random indexing of text samples for latent semantic analysis. In L. R.Gleitman & A. K.Joshi (Eds.), Proceedings of the 22nd annual conference of the cognitive science society (pp. 1036). Mahwah, NJ: Erlbaum.
  • Karypis, G. (2003). CLUTO: A Clustering Toolkit. Available at: http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download. Accessed April 15, 2008.
  • Kintsch, W. (2007). Meaning in context. In T. K.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 89105). Mahwah, NJ: Erlbaum.
  • Kintsch, W. (2008). Symbol systems and perceptual representations. In M.de Vega, A.Glenberg, & A.Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition (pp. 145163). New York: Oxford University Press.
  • Laham, D. (2000). Automated content assessment of text using latent semantic analysis to simulate human cognition. Unpublished PhD Thesis, University of Colorado.
  • Landauer, T., & Dumais, S. (1997). A solution to Plato’s problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211240.
  • Lavelli, A., Sebastiani, F., & Zanoli, R. (2004). Distributional term representations: An experimental comparison. In D.Grossman (Ed.), Proceedings of the thirteenth international conference on information and knowledge management (CIKM) (pp. 615624). New York: ACM Press.
  • Logan, G. D. (1988). Towards an instance theory of automization. Psychological Review, 95(4), 492527.
  • Louwerse, M. M. (2007). Symbolic or embodied representations: A case for symbol interdependency. In T. K.Landauer, D. S.Macnamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 107120). Mahwah, NJ: Erlbaum.
  • Louwerse, M. M. (2008). Embodied relations are encoded by language. Psychonomic Bulletin and Review, 15(4), 838844.
  • Louwerse, M. M., Cai, Z., Hu, X., Ventura, M., & Jeuniaux, P. (2006). Cognitively inspired NLP-based knowledge representations: Further explorations of Latent Semantic Analysis. International Journal on Artificial Intelligence Tools, 15(6), 10211039.
  • Louwerse, M. M., & Jeuniaux, P. (2008). Language comprehension is both embodied and symbolic. In M.de Vega, A.Glenberg, & A. C.Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition (pp. 309326). New York: Oxford University Press.
  • Louwerse, M. M., & Zwaan, R. A. (2009). Language encodes geographic information. Cognitive Science, 33(1), 5173.
  • Lowe, W. (2000). Topographic maps of semantic space. Unpublished Ph.D. thesis, University of Edinburgh.
  • Lowe, W. (2001). Towards a theory of semantic space. In J.Moore & K.Stenning (Eds.), Proceedings of the 23rd conference of the cognitive science society (pp. 576581). Mahwah, NJ: Erlbaum.
  • Lowe, W., & McDonald, S. (2000). The direct route: Mediated priming in semantic space. In L.Glietman & A.Joshi (Eds.), Proceedings of the 22nd conference of the cognitive science society (pp. 806811). Mahwah, NJ: Erlbaum.
  • Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavioral Research Methods, Instrumentation, and Computers, 28, 203208.
  • MacWhinney, B. (2000). The CHILDES Project: Tools for analyzing talk (3rd ed.). Mahwah, NJ: Erlbaum.
  • Maki, W. S., & Buchanan, E. (2008). Latent structure in measures of associative, semantic, and thematic knowledge. Behavior Research Methods, 15(3), 598603.
  • Maki, W. S., McKinley, L. N., & Thompson, A. G. (2004). Semantic distance norms computed from an electronic dictionary (WordNet). Behavior Research Methods, Instruments, & Computers, 36(3), 421431.
  • Martin, D., & Berry, M. (2007). Mathematical foundations behind latent semantic analysis. In T. K.Landauer, D. S.Macnamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 3555). Mahwah, NJ: Erlbaum.
  • McDonald, S. (2000). Environmental determinants of lexical processing effort. Unpublished PhD Thesis, University of Edinburgh.
  • McDonald, S., & Lowe, W. (1998). Modelling functional priming and the associative boost. In S. J.Derry & M. A.Gernsbacher (Eds.), Proceedings of the 20th annual conference of the cognitive science society (pp. 675680). Mahwah, NJ: Erlbaum.
  • McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37(4), 547559.
  • McRae, K., Cree, G. S., Westmacott, R., & de Sa, V. R. (1999). Further evidence for feature correlations in semantic memory. Canadian Journal of Experimental Psychology, 53(4), 360373.
  • McRae, K., de Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126(2), 99130.
  • Miller, G. A. (1998). Nouns in WordNet. In C.Fellbaum (Ed.), WordNet: An electronic lexical database (pp. 2346). Cambridge, MA: MIT Press.
  • Miller, G. A., & Charles, W. G. (1991). Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1), 128.
  • Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36(3), 402407.
  • Padó, S., & Lapata, M. (2007). Dependency-based construction of semantic space models. Computational Linguistics, 33(2), 161199.
  • Perfetti, C. (1998). The limits of co-occurrence: Tools and theories in language research. Discourse Processes, 25, 363377.
  • Porter, M., & Boulton, R. (2006). Snowball stemmer [computer software]. Available at: http://snowball.tartarus.org.
  • Pulvermüller, F. (2008). Grounding language in the brain. In M.de Vega, A.Glenberg, & A.Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition (pp. 85116). New York: Oxford University Press.
  • Quesada, J. (2007). Creating your own LSA spaces. In T. K.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 7185). Mahwah, NJ: Erlbaum.
  • Rao, V. A., & Howard, M. W. (2008). Retrieved context and the discovery of semantic structure. In J. C.Platt, D.Koller, Y.Singer, & S.Roweis (Eds.), Advances in neural information processing systems 20. Cambridge, MA: MIT Press.
  • Rasmussen, M., Newman, M., & Karypis, G. (2003). gCLUTO Documentation, Version 1.2. Minneapolis, MN: University of Minnesota.
  • Recchia, G., & Jones, M. N. (2009). More data trumps smarter algorithms: Comparing pointwise mutual information to latent semantic analysis. Behavior Research Methods, 41, 657663.
  • Riordan, B., & Jones, M. N. (2007). Comparing semantic space models using child-directed speech. In D. S.McNamara & J. G.Trafton (Eds.), Proceedings of the 29th conference of the Cognitive Science Society (pp. 599604). Austin, TX: Cognitive Science Society.
  • Sahlgren, M. (2006). The word-space model: Using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector Spaces. Unpublished PhD Thesis, Stockholm University.
  • Sahlgren, M., Holst, A., & Kanerva, P. (2008). Permutations as a means to encode order in word space. In V.Sloutsky, B.Love, & K.McRae (Eds.), Proceedings of the 30th annual conference of the Cognitive Science Society (pp. 13001305). Austin, TX: Cognitive Science Society.
  • Sanford, A. J. (2006). Semantics in psychology. In K.Brown (Ed.), Encyclopedia of language and linguistics (2nd ed. Vol. 11, pp. 152158). Amsterdam: Elsevier.
  • Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In D. B.Jones & H.Somers (Eds.), Proceedings of the international conference on new methods in language processing (pp. 4449). London: Routledge.
  • Shaoul, C., & Westbury, C. (2006). Word frequency effects in high-dimensional co-occurrence models: A new approach. Behavior Research Methods, 38(2), 190195.
  • Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: A featural model for semantic decisions. Psychological Review, 81, 214241.
  • Steyvers, M., & Griffiths, T. L. (2007). Probabilistic topic models. In T. K.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 427448). Mahwah, NJ: Erlbaum.
  • de Vega, M., Graesser, A., & Glenberg, A. (2008). Reflecting on the debate. In M.de Vega, A.Glenberg, & A.Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition (pp. 397440). New York: Oxford University Press.
  • Vigliocco, G., Vinson, D. P., Damian, M. F., & Levelt, W. (2002). Semantic distance effects on object and action naming. Cognition, 85(3), B61B69.
  • Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. (2004). Representing the meanings of object and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48(4), 422488.
  • Vigliocco, G., Vinson, D. P., & Siri, S. (2005). Semantic and grammatical class effects in naming actions. Cognition, 94, B91100.
  • Vinson, D. P., & Vigliocco, G. (2008). Semantic feature production norms for a large set of objects and events. Behavior Research Methods, 40(1), 183190.
  • Vinson, D. P., Vigliocco, G., Cappa, S., & Siri, S. (2003). The breakdown of semantic knowledge: Insights from a statistical model of meaning representation. Understanding Language, 86(3), 347365.
  • Zeno, S., Ivens, S., Millard, R., & Duvvuri, R. (Eds.) (1995). The Educator’s Word Frequency Guide. Brewster, NY: Touchstone Applied Science Associates.
  • Zhao, Y., & Karypis, G. (2001). Criterion functions for document clustering: Experiments and analysis (University of Minnesota Computer Science Technical Report CS 01-40). Minneapolis, MN: University of Minnesota.
  • Zhao, Y., & Karypis, G. (2002). Evaluation of hierarchical clustering algorithms for document datasets. In C.Nicholas (Ed.), Proceedings of the eleventh international conference of information and knowledge management (CIKM) (pp. 515524). MacLean, VA: ACM Press.