SEARCH

SEARCH BY CITATION

References

  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavior and Brain Sciences, 22, 577660.
  • Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London: Series B, 358, 11771187.
  • Church, K. W., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Computational Linguistics, 16, 2229.
  • De Vega, M., Glenberg, A., & Graesser, A. C. (2008). Symbols and embodiment: Debates on meaning and cognition. Oxford, England: Oxford University Press.
  • Dennis, S. (2005). A memory-based theory of verbal cognition. Cognitive Science, 29, 145193.
  • Dennis, S., & Kintsch, W. (2008). Text mapping and inference rule generation problems in text comprehension: Evaluating a memory-based account. In F.Schmalhofer & C.Perfetti (Eds.), Higher level language processes in the brain: Inference and comprehension processes (pp. 105132). Mahwah, NJ: Erlbaum.
  • Dunning, T. (1993). Accurate methods for the statistics of surprise and coincidence. Computational Linguistics, 19, 6174.
  • Fenson, L., Dale, P., Reznick, S., Bates, E., Thal, D., & Pethick, S. (1994). Variability in early communicative development. Monographs of the Society for Research in Child Development, 59, 1185.
  • Firth, J. R. (1957). A synopsis of linguistic theory, 1930–1955. In J. R.Firth (Ed.), Studies in linguistic analysis (pp. 132). Special volume of the Philological Society. Oxford, England: Blackwell.
  • Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20, 155.
  • Graesser, A. C., & McNamara, D. S. (2010). Computational analyses of multilevel discourse comprehension. Topics in Cognitive Science, DOI: 10.1111/j.1756-8765.2010.01081.x
  • Hinton, G., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 15271554.
  • Hinton, G., & Salakhutdinov, R. (2010). Discovering binary codes for documents by learning deep generative models. Topics in Cognitive Science, DOI: 10.1111/j.1756-8765.2010.01109.x
  • Hintzman, D. L. (1984). MINERVA2: A simulation model of human memory. Behavior, Research Methods, Instruments, and Computers, 16, 96101.
  • Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46, 269299.
  • Howard, M., Shankar, K., & Jagadisan, U. (2010). Constructing semantic representations from a gradually-changing representation of temporal context. Topics in Cognitive Science, DOI: 10.1111/j.1756-8765.2010.01112.x
  • Jones, M. N., Kintsch, W., & Mewhort, D. J. K. (2006). High-dimensional semantic space accounts of priming. Journal of Memory and Language, 55, 534552.
  • Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114, 137.
  • Kintsch, W. (1998). Comprehension: A paradigm for cognition. New York: Cambridge University Press.
  • Kintsch, W. (2001). Predication. Cognitive Science, 25, 173202.
  • Kintsch, W. (2007). Meaning in context. In T. K.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 89105). Mahwah, NJ: Erlbaum.
  • Kintsch, W. (2008). Symbol systems and perceptual representations. In M.de Vega, A.Glenberg, & A.Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition (pp. 145163). New York: Oxford University Press.
  • Kintsch, W., & Mangalath, P. (2010). The construction of meaning. Topics in Cognitive Science, DOI: 10.1111/j.1756-8765.2010.01107.x
  • Kwantes, P. J. (2005). Using context to build semantics. Psychonomic Bulletin & Review, 12, 703710.
  • Landauer, T. K. (2007) LSA as a theory of meaning. In T. K.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 334). Mahwah, NJ: Erlbaum.
  • Landauer, T., & Dumais, S. (1997). A solution to Plato’s problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240.
  • Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.) (2007). Handbook of latent semantic analysis. Mahwah, NJ: Erlbaum.
  • Louwerse, M. M. (2010). Symbol interdependency in symbolic and embodied cognition. Topics in Cognitive Science, DOI: 10.1111/j.1756-8765.2010.01106.x
  • Lowe, W. (2001). Towards a theory of semantic space. In J.Moore & K.Stenning (Eds.), Proceedings of the 23rd Conference of the Cognitive Science Society (pp. 576581). Mahwah, NJ: Erlbaum.
  • Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical cooccurrence. Behavioral Research Methods, Instrumentation, and Computers, 28, 203208.
  • MacWhinney, B. (2000). The CHILDES Project: Tools for analyzing talk, 3rd ed. Mahwah, NJ: Erlbaum.
  • McNamara, D. S., Boonthum, C., Levinstein, I. B., & Millis, K. (2007). Evaluating self-explanations in iSTART: Comparing word-based and LSA algorithms. In T.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 227241). Mahwah, NJ: Erlbaum.
  • McNamara, D. S., Cai, Z., & Louwerse, M. M. (2007). Comparing latent and non-latent measures of cohesion. In T.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 379400). Mahwah, NJ: Erlbaum.
  • McNamara, D. S., & Kintsch, W. (1996). Learning from text: Effects of prior knowledge and text coherence. Discourse Processes, 22, 247288.
  • McNamara, D. S., Louwerse, M. M., McCarthy, P. M., & Graesser, A. C. (2010). Coh-Metrix: Capturing linguistic features of cohesion. Discourse Processes, 47, 292330.
  • McNamara, D. S., & Magliano, J. P. (2009). Towards a comprehensive model of comprehension. In B.Ross (Ed.), The psychology of learning and motivation (pp. 298372). New York: Elsevier Science.
  • McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37, 547559.
  • Murdock, B. B. (1992). Serial organization in a distributed memory model. In A. F.Healy, S. M.Kosslyn, & R. M.Shiffrin (Eds.), From learning theory to connectionist theory: Essays in honor of William K. Estes (pp. 201225). Hillsdale, NJ: Erlbaum.
  • O’Reilly, T., & McNamara, D. S. (2007). Reversing the reverse cohesion effect: Good texts can be better for strategic, high-knowledge readers. Discourse Processes, 43, 121152.
  • O’Rourke, S. T., & Calvo, R. A. (2009). Visualizing paragraph closeness for academic writing support. In S.Murugesan (Ed.), Handbook of research on the web 2.0, 3.0, and X.0 technologies, business, and social applications (Ch. XLVII). Hershey, PA: IGI Global.
  • Osgood, C. E., Suci, G., & Tannenbaum, P. (1957). The measurement of meaning. Urbana, IL: University of Illinois Press.
  • Paivio, A., & Sadoski, M. (in press). Lexicons, contexts, events, and images: Commentary on Elman (2009) from the perspective of dual coding theory. Cognitive Science.
  • Recchia, G. L., & Jones, M. N. (2009). More data trumps smarter algorithms: Comparing pointwise mutual information with latent semantic analysis. Behavior Research Methods, 41, 657663.
  • Riordan, B., & Jones, M. N. (2010). Redundancy in perceptual and linguistic experience: Comparing feature-based and distributional models of semantic representation. Topics in Cognitive Science, DOI: 10.1111/j.1756-8765.2010.01111.x
  • Rohde, D. L. T., Gonnerman, L. M., & Plaut, D. C. (2005). An improved method of deriving word meaning from lexical co-occurrence. Unpublished manuscript. Available at: http://tedlab.mit.edu/~dr/. Accessed January 15, 2010.
  • Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18, 613620.
  • Shaoul, C., & Westbury, C. (2006). Word frequency effects in high-dimensional co-occurrence models: A new approach. Behavior Research Methods, 38, 190195.
  • Shapiro, A. M., & McNamara, D. S. (2000). The use of latent semantic analysis as a tool for the quantitative assessment of understanding and knowledge. Journal of Educational Computing Research, 22, 136.
  • Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: A featural model for semantic decisions. Psychological Review, 1, 214241.
  • Steyvers, M., Chemudugunta, C., & Smyth, P. (2010). Combining background knowledge and learned topics. Topics in Cognitive Science, DOI: 10.1111/j.1756-8765.2010.01097.x
  • Steyvers, M., & Griffiths, T. L. (2007). Probabilistic topic models. In T. K.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 427448). Mahwah, NJ: Erlbaum.
  • Stone, B. P., Dennis, S. J., & Kwantes, P. J. (2010). Comparing Methods for Single Paragraph Similarity Analysis. Topics in Cognitive Science, 10.1111/j.1756-8765.2010.01108.x.
  • Vinson, D. P., & Vigliocco, G. (2008). Semantic feature production norms for a large set of objects and events. Behavior Research Methods, 40, 183190.
  • Xu, W., Liu, X., & Gong, Y. (2003). Document clustering based on non-negative matrix factorization. In C.Clarke and G.Cormack (Eds.), Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval (pp. 267273). New York: ACM Press.