• Bors, D. (2003). The effect of practice on Raven's Advanced Progressive Matrices. Learning and Individual Differences, 13(4), 291312.
  • Carpenter, P., Just, M., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97(3), 404431.
  • Eliasmith, C. (2005). A unified approach to building and controlling spiking attractor networks. Neural Computation, 17(6), 12761314.
  • Eliasmith, C., & Anderson, C. (2003). Neural engineering: Computation, representation, and dynamics in neurobiological systems. Cambridge, MA: MIT Press.
  • Gayler, R. (2003). Vector Symbolic Architectures answer Jackendoff's challenges for cognitive neuroscience. In P.Slezak (Ed.), ICCS/ASCS international conference on Cognitive Science (pp. 133138). Sydney: University of New South Wales.
  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316322.
  • Hunt, E. (1973). Quote the Raven? Nevermore! In L.Gregg (Ed.), Knowledge and cognition (pp. 129157). Potomac, NJ: Lawrence Erlbaum Associates.
  • Lovett, A., Forbus, K., & Usher, J. (2010). A structure-mapping model of Raven's Progressive Matrices. In S.Ohlsson & R.Catrambone (Eds.), Proceedings of the 32nd annual conference of the Cognitive Science Society (pp. 27612766). Austin, TX: Cognitive Science Society.
  • Marshalek, B., Lohman, D., & Snow, R. (1983). The complexity continuum in the radex and hierarchical models of intelligence. Intelligence, 7(2), 107127.
  • McGreggor, K., Kunda, M., & Goel, A. (2010). A fractal analogy approach to the Raven's test of intelligence. In AAAI workshops at the 24th AAAI conference on Artificial Intelligence (pp. 6975). Atlanta: Association for the Advancement of Artificial Intelligence.
  • Meo, M., Roberts, M., & Marucci, F. (2007). Element salience as a predictor of item difficulty for Raven's Progressive Matrices. Intelligence, 35(4), 359368.
  • Neumann, J. (2001). Holistic processing of hierarchical structures in connectionist networks, Unpublished doctoral thesis, University of Edinburgh.
  • Perfetti, B., Saggino, A., Ferretti, A., Caulo, M., Romani, G. L., & Onofrj, M. (2009). Differential patterns of cortical activation as a function of fluid reasoning complexity. Human Brain Mapping, 30(2), 497510.
  • Plate, T. (2003). Holographic reduced representations. Stanford, CA: CLSI Publications.
  • Prabhakaran, V., Smith, J., Desmond, J., Glover, G., & Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology, 33, 4363.
  • Raven, J. (1962). Advanced progressive matrices (Sets I and II). London: Lewis.
  • Stewart, T. C., Tang, Y., & Eliasmith, C. (2009). A biologically realistic cleanup memory: Autoassociation in spiking neurons. In A.Howes, D.Peebles, & R.Cooper (Eds.), 9th international conference on cognitive modelling (pp. 128133). Manchester, England: ICCM2009.
  • Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dynamic behaviour of a spiking model of action selection in the basal ganglia. In S.Ohlsson & R.Catrambone (Eds.), Proceedings of the 32nd annual conference of the Cognitive Science Society (pp. 235240). Austin: Cognitive Science Society.
  • Verguts, T., & De Boeck, P. (2002). The induction of solution rules in Ravens Progressive Matrices Test. European Journal of Cognitive Psychology, 14, 521547.
  • Vigneau, F., Caissie, A., & Bors, D. (2006). Eye-movement analysis demonstrates strategic influences on intelligence. Intelligence, 34(3), 261272.