SEARCH

SEARCH BY CITATION

References

  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183198.
  • Bennett, K. B., & Flach, J. M. (1992). Graphical displays: Implications for divided attention, focused attention, and problem solving. Human Factors, 34, 513533.
  • Bertin, J. (1983). Semiology of graphics: Diagrams networks maps (W.Berg, Trans.). Madison: University of Wisconsin Press.
  • Breslow, L. A., Trafton, G. J., & Ratwani, R. M. (2009). A perceptual process approach to selecting color scales for complex visualizations. Journal of Experimental Psychology: Applied, 15, 2534.
  • Brown, L. (1979). The story of maps. New York: Dover.
  • Card, S. K., Mackinlay, J. D., & Schneiderman, B. (1999). Readings in information visualization: Using vision to think. San Francisco: Morgan Kaufmann Publishers.
  • Carpenter, P. A., & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology: Applied, 4, 75100.
  • Carswell, M. (1992). Choosing specifiers: An evaluation of the basic tasks model of graphical perception. Human Factors, 34, 535554.
  • Cheng, P. C.-H. (2002). Electrifying diagrams for learning: Principles for effective representational systems. Cognitive Science, 26, 685736.
  • Cheng, P. C.-H., & Barone, R. (2004). Representing rosters: Conceptual integration counteracts visual complexity. In A.Blackwell, K.Mariott, & A.Shimojima (Eds.), Diagrammatic representation and inference: Third international diagrams conference (pp. 385387). Berlin: Springer-Verlag.
  • Cheng, P. C.-H., & Barone, R. (2007). Representing complex problems: A representational epistemic approach. In D. H.Johanssen (Ed.), Learning to solve complex scientific problems (pp. 97130). Mahwah, NJ: Erlbaum.
  • Cleveland, W. S. (1984). Graphs in scientific publications. American Statistician, 38, 261269.
  • Cleveland, W. S. (1985). The elements of graphing data. Monterey, CA: Wadsworth.
  • Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation and application to the development of graphical methods. Journal of the American Statistical Association, 79, 531554.
  • Dent, B. D. (1999). Cartography: Thematic map design. Boston, MA: McGraw-Hill.
  • DiSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22, 293331.
  • Duncker, K. (1945). On problem solving. Psychological Monographs, 58, (Whole No 270).
  • Durding, B. M., Becker, C. A., & Gould, J. D. (1977). Data organization. Human Factors, 19, 114.
  • Fabrikant, S. I., & Boughman, A. (2006). Communicating data quality through realism. Proceedings of GIScience, Münster, Germany, September 20–23.
  • Fabrikant, S. I., & Lobben, A. (2009). Guest editor’s introduction. Special issue: Cognitive issues in geographic information visualization. Cartographica, 44, 129144.
  • Fabrikant, S. I., Rebich-Hespanha, S., & Hegarty, M. (2010). Cognitively inspired and perceptually salient graphic displays for efficient inference making. Annals of the Association of American Geographers, 100, 1329.
  • Ferguson, E. S. (2001). Engineering and the mind’s eye. Cambridge, MA: MIT Press.
  • Freedman, E. G., & Shah, P. (2002). Toward a model of knowledge-based graph comprehension. In M.Hegarty, B.Meyer, & N. H.Naryanan (Eds.), Diagrammatic representation and inference (pp. 831). Berlin: Springer-Verlag.
  • Furnas, G. (1986). Generalized fisheye views. In M.Mantei & P.Orbeton (Eds.), Proceedings of the 1986 SIGCHI Conference on Human Factors in Computing Systems (pp. 1623). New York: Association for Computing Machinery.
  • Gattis, M., & Holyoak, K. J. (1996). Mapping conceptual to spatial relations in visual reasoning. Journal of Experimental Psychology: Learning, Memory & Cognition, 22, 231239.
  • Gillan, D. J., & Callahan, A. B. (2000). A componential model of human interaction with graphs: VI. Cognitive engineering of pie graphs. Human Factors, 42, 566591.
  • Gillan, D. J., & Lewis, R. (1994). A componential model of human interaction with graphs: 1. Linear regression modeling. Human Factors, 36, 419440.
  • Gillan, D. J., & Richman, E. H. (1994). Minimalism and the syntax of graphs. Human Factors, 36, 619644.
  • Gillan, D. J., Wickens, C. D., Hollands, J. G., & Carswell, C. M. (1998). Guidelines for presenting quantitative data in HFES publications. Human Factors, 40, 2841.
  • van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning. Learning and Instruction, 20, 9599.
  • Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: Guiding attention guides thought. Psychological Science, 14(5), 462466.
    Direct Link:
  • Hegarty, M., Canham, M., & Fabrikant, S. I. (2010). Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task. Journal of Experimental Psychology: Learning, Memory and Cognition, 36, 3753.
  • Henderson, J. M., & Ferreira, F. (2004). Scene perception for psycholinguists. In J. M.Henderson & F.Ferreira (Eds.), The interface of language, vision and action (pp. 158). New York: Psychology Press.
  • Hollands, J. G., & Spence, I. (1998). Judging proportion with graphs: The summation model. Applied Cognitive Psychology, 12, 173190.
  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 14891506.
  • Keehner, M., Hegarty, M., Cohen, C. A., Khooshabeh, P., & Montello, D. R. (2008). Spatial reasoning with external visualizations: What matters is what you see, not whether you interact. Cognitive Science, 32, 10991132.
  • Kirsh, D. (1997). Interactivity and multimedia interfaces. Instructional Science, 25, 7696.
  • Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18, 513549.
  • Kosslyn, S. M. (1989). Understanding charts & graphs. Applied Cognitive Psychology, 3, 185226.
  • Kosslyn, S. M. (1994). Elements of graph design. New York: W. H. Freeman.
  • Kosslyn, S. M. (2006). Graph design for the eye and mind. New York: Oxford University Press.
  • Kriz, S., & Hegarty, M. (2007). Top-down and bottom-up influences on learning from animations. International Journal of Human-Computer Studies, 65, 911930.
  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.
  • Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 6599.
  • Lewandowsky, S., & Behrens, J. T. (1999). Statistical graphs and maps. In F. T.Durso, R. S.Nickerson, R. W.Schvaneveldt, S. T.Dumais, D. S.Lindsay, & M. T. H.Chi (Eds.), Handbook of applied cognition (pp. 513549). Hoboken, NJ: Wiley.
  • Liben, L. S. (2001). Thinking through maps. In M.Gattis (Ed.), Spatial schemas and abstract thought (pp. 4577). Cambridge, MA: MIT Press.
  • Lohrenz, M. C., Trafton, J. G., Beck, M. R., & Gendron, M. L. (2009). A model of clutter for complex, multivariate, geospatial displays. Human Factors, 51, 90101.
  • Lohse, G. L. (1993). A cognitive model for understanding graphical perception. Human Computer Interaction, 8, 353388.
  • Loomis, J. M., & Knapp, J. M. (2003). Visual perception of egocentric distance in real and virtual environments. In L. J.Hettinger & M. W.Hass (Eds.), Virtual and adaptive environments (pp. 2146). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Lowe, R. K. (1996). Background knowledge and the construction of a situational representation from a diagram. European Journal of Psychology of Education, 11, 377397.
  • MacEachren, A. (1995). How maps work. Representation, visualization and design. New York: The Guilford Press.
  • MacEachren, A. M., & Kraak, M.-J. (2000). Research challenges in geovisualization. Cartography and Geographic Information Science, 28, 312.
  • Mackinlay, J. D. (1986). Automating the design of graphical presentations of relational information. ACM Transactions on Graphics, 5, 110141.
  • Mayer, R. E., Hegarty, M., Mayer, S. Y., & Campbell, J. (2005). When passive media promote active learning: Static diagrams versus animation in multimedia instruction. Journal of Experimental Psychology: Applied, 11, 256265.
  • McCabe, D. P., & Castel, A. D. (2008). Seeing is believing: The effect of brain images on judgments of scientific reasoning. Cognition, 107, 343352.
  • McCormick, B. H., DeFanti, T., & Brown, M. D. (1987). Visualization and scientific computing. Arlington, VA: National Science Foundation.
  • Montello, D. R. (1993). Scale and multiple psychologies of space. In A. U.Frank & I.Campari (Eds.), Spatial information theory: A theoretical basis for GIS (pp. 312321). Proceedings of COSIT ‘93. Berlin: Springer-Verlag, Lecture notes in Computer Science 716.
  • Myles-Worsley, M., Johnston, W. A., & Simons, M. A. (1988). The influence of expertise on X-ray image processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3), 553557.
  • Norman, D. (1994). Things that make us smart. New York: Addison-Wesley.
  • Novick, L. R., & Catley, K. M. (2007). Understanding phylogenies in biology: The influence of a Gestalt perceptual principle. Journal of Experimental Psychology: Applied, 13, 197223.
  • Novick, L. R., & Hurley, S. M. (2001). To matrix, network, or hierarchy: That is the question. Cognitive Psychology, 42, 158216.
  • Palmer, S. E. (1978). Fundamental aspects of cognitive representations. In E.Rosch & B. B.Lloyd (Eds.), Cognition and categorization (pp. 259303). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Panofsky, E. (1960). Renaissance and renascences in western art. Stockholm: Almqvist & Wiksell.
  • Peebles, D., & Cheng, P. C.-H. (2003). Modeling the effect of task and graphical representation on response latency in a graph-reading task. Human Factors, 45, 2846.
  • Pinker, S. (1990). A theory of graph comprehension. In R.Freedle (Ed.), Artificial intelligence and the future of testing (pp. 73126). Hillsdale, NJ: Erlbaum.
  • Pomerantz, J. R., & Pristach, E. A. (1989). Emergent features, attention, and perceptual glue in visual form perception. Journal of Experimental Psychology: Human Perception and Performance, 15(4), 635649.
  • Pylyshyn, Z. W. (2003). Seeing and visualizing: It’s not what you think. Cambridge, MA: MIT Press.
  • Ratwani, R. M., & Trafton, J. G. (2008). Shedding light on the graph schema: Perceptual features versus invariant structure. Psychonomic Bulletin & Review, 15, 757762.
  • Ratwani, R. M., Trafton, J. G., & Boehm-Davis, D. A. (2008). Thinking graphically: Connecting vision and cognition during graph comprehension. Journal of Experimental Psychology: Applied, 14, 3649.
  • Robertson, G., Czerwinski, M., Fisher, D., & Lee, B. (2009). Selected human factors issues in information visualization. Reviews of Human Factors and Engineering, 5, 4181.
  • Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring visual clutter. Journal of Vision, 7, 122.
  • Sanfey, A., & Hastie, R. (1998). Does evidence presentation format affect judgment? An experimental evaluation of displays of data for judgments. Psychological Science, 9, 99103.
    Direct Link:
  • Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? International Journal of Human-Computer Studies, 45, 115143.
  • Schneiderman, B. (1994). Dynamic queries for visual information seeking. IEEE Software, 11, 7077.
  • Schwartz, D. L. (1995). Reasoning about the referent of a picture versus reasoning about the picture as the referent: An effect of visual realism. Memory & Cognition, 23, 709722.
  • Shah, P., & Carpenter, P. (1995). Conceptual limitations in comprehending line graphs. Journal of Experimental Psychology: General, 124, 337370.
  • Shah, P., Freedman, E. G., & Vekiri, I. (2005). The comprehension of quantitative information in graphical displays. In P.Shah & A.Miyake (Eds.), The Cambridge handbook of visual spatial thinking (pp. 426476). New York: Cambridge University Press.
  • Simkin, D. K., & Hastie, R. (1987). An information-processing analysis of graph perception. Journal of the American Statistical Association, 82, 454465.
  • Smallman, H. S., & St. John, M. (2005). Naïve realism: Misplaced faith in realistic displays. Ergonomics in Design, 13, 1419.
  • Smith, P. J., Bennett, K. B., & Stone, B. R. (2006). Representation aiding to support performance on problem solving tasks. Reviews of Human Factors and Ergonomics, 2, 74108.
  • Smith, L. D., Best, L. A., Stubbs, A. D., Archibald, A. B., & Roberson-Nay, R. (2002). Constructing knowledge: The role of graphs and tables in hard and soft psychology. American Psychologist, 57, 749761.
  • Spence, I., & Lewandowsky, S. (1991). Displaying proportions and percentages. Applied Cognitive Psychology, 5, 6177.
  • Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning: Logic and implementation. Cognitive Science, 19, 97140.
  • Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677680.
  • Thomas, J. J., & Cook, K. A. (2005). Illuminating the path: Research and development agenda for visual analytics. Richland, WA: IEEE Press.
  • Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234240.
  • Trafton, J. G., Kirschenbaum, S. S., Tsui, T. L., Miyamoto, R. T., Ballas, J. A., & Raymond, P. D. (2000). Turning pictures into numbers: Extracting and generating information from complex visualizations. International Journal of Human-Computer Studies, 53, 827850.
  • Tufte, E. T. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics Press.
  • Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.
  • Tversky, B. (2001). Spatial schemas in depictions. In M.Gattis (Ed.), Spatial schemas and abstract thought (pp. 79112). Cambridge, MA: MIT Press.
  • Tversky, B., Kugelmass, S., & Winter, A. (1991). Cross-cultural and developmental trends in graphic productions. Cognitive Psychology, 23, 515557.
  • Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57, 247262.
  • Vicente, K. (2002). Ecological interface design: Progress and challenges. Human Factors, 44, 6278.
  • Wainer, H. (2005). Graphic discovery: A trout in the milk and other visual adventures. Princeton, NJ: Princeton University Press.
  • White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education. Cognition and Instruction, 10, 1100.
  • Wickens, C. D., & Carswell, M. (1995). The proximity compatibility principle: Its psychological foundation and relevance to display design. Human Factors, 37, 473494.
  • Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human performance. Upper Saddle River, NJ: Prentice Hall Inc.
  • Woods, D. D. (1984). Visual momentum: A concept to improve the cognitive coupling of person and computer. International Journal of Man-Machine Studies, 21, 229244.
  • Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821842.
  • Yeh, M., & Wickens, C. D. (2001). Attentional filtering in the design of electronic map displays: A comparison of color coding, intensity coding, and decluttering techniques. Human Factors, 43, 543562.
  • Zhang, J. (1996). A representational analysis of relational information displays. International Journal of Human Computer Studies, 45, 5974.
  • Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive Science, 18, 87122.