SEARCH

SEARCH BY CITATION

References

  • Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85, 249277.
  • Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 10361060.
  • Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Banerjee, B. (2007). Spatial problem solving for diagrammatic reasoning. Ph.D. dissertation, Department of Computer Science & Engineering, The Ohio State University, Columbus.
  • Banerjee, B., & Chandrasekaran, B. (2010a). A constraint satisfaction framework for executing perceptions and actions in diagrammatic reasoning. Journal of AI Research, 39, 373427.
  • Banerjee, B., & Chandrasekaran, B. (2010b). A spatial search framework for executing perceptions and actions in diagrammatic reasoning. In A. K. Goel, M. Jamnik, & N. H. Narayanan (Eds.), Diagrammatic representation and inference (pp. 144159). Lecture Notes in Artificial Intelligence 6170, Heidelberg: Springer.
  • Barkowsky, T. (2001). Mental processing of geographic knowledge. In D. R. Montello (Ed.), Spatial information theory—foundations of geographic information science (pp. 371386). Berlin: Springer.
  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577609.
  • Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C. Lebiere (Eds.), The atomic components of thought (pp. 167200). Mahwah, NJ: Lawrence Erlbaum.
  • Carpenter, P. A., & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology: Applied, 4, 75100.
  • Chambers, D., & Reisberg, D. (1985). Can mental images be ambiguous? Journal of Experimental Psychology: Human Perception and Performance, 11, 317328.
  • Chandrasekaran, B. (2006). Multimodal cognitive architecture: making perception more central to intelligent behavior. Proceedings of the AAAI National Conference on Artificial Intelligence, 15081512.
  • Chandrasekaran, B. (in press). When is a bunch of marks on paper a diagram? Diagrams as homomorphic representations. Semiotica.
  • Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson, J. R., & Winkler, R. (2004). An architecture for problem solving with diagrams. In A. Blackwell, K. Marriott, & A. Shimojima (Eds.), Diagrammatic representation and inference (pp. 151165). Berlin: Springer-Verlag.
  • Chandrasekaran, B., & Lele, O. (2010). Mapping descriptive models of graph comprehension into requirements for a computational architecture: Need for supporting imagery operations. In A. K. Goel, M. Jamnik, & N. H. Narayanan (Eds.), Diagrammatic representation and inference (pp. 235242). Lecture Notes in Artificial Intelligence 6170, Heidelberg: Springer.
  • Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 531554.
  • Cleveland, W. S., & McGill, R. (1985). Graphical perception and graphical methods for analyzing scientific data. Science, New Series, 229(4716), 828833.
  • Damasio, A. (1994). Descartes’ error: emotion, reason, and the human brain. New York: Avon.
  • Gelernter, H. (1963). Realization of a geometry-theorem proving machine. In E. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 134152). New York: McGraw-Hill.
  • Gillan, D. J. (2009). A componential model of human interaction with graphs: VII. A review of the Mixed Arithmetic-Perceptual model. In Proceedings of the Human Factors and Ergonomics Society 52th Annual Meeting (pp. 829833). Santa Monica, CA: HFES.
  • Gillan, D. J., & Lewis, R. (1994). A componential model of human interaction with graphs. I. Linear regression modeling. Human Factors, 36, 419440.
  • Halford, G. S., Baker, R., McCredden, J. E., & Bain, J. D. (2005). How many variables can humans process? Psychological Science, 16, 7076.
    Direct Link:
  • Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 4(12), 391438.
  • Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks: Elements of expertise in geometry. Cognitive Science, 14, 511550.
  • Kosslyn, S. M. (1989). Understanding charts and graphs. Applied Cognitive Psychology, 3, 185225.
  • Kosslyn, S. M., & Pomerantz, J. R. (1977). Imagery, propositions, and the form of internal representations. Cognitive Psychology, 9, 5276.
  • Kurup, U., & Chandrasekaran, B. (2007). Modeling memories of large-scale space using a bimodal cognitive architecture. In R. L. Lewis, T. A. Polk, & J. E. Laird (Eds.), Proceedings of the 8th International Conference on Cognitive Modeling (pp. 267272). Ann Arbor: University of Michigan.
  • Kurup, U., & Chandrasekaran, B. (2009). A cognitive map for an artificial agent. Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia. Amsterdam-Paris: Atlantis Press, ISBN: 978-90-78677-24-6, 85-90.
  • Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33(1), 164.
  • Lane, P. C. R., Cheng, P. C.-H., & Gobet, F. (2000). CHREST+: Investigating how humans learn to solve problems using diagrams. Artificial Intelligence and the Simulation of Behaviour Quarterly, 103, 2430.
  • Larkin, J. H., & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 6599.
  • Lathrop, S. D., & Laird, J. E. (2007). Towards incorporating visual imagery into a cognitive architecture. In R. L. Lewis, T. A. Polk, & J. E. Laird (Eds.), Proceedings of the 8th International Conference on Cognitive Modeling (pp. 2530). Ann Arbor: University of Michigan.
  • Lindsay, R. K. (1998). Using diagrams to understand geometry. Computational Intelligence, 14, 238272.
  • Matessa, M., Archer, R., & Mui, R. (2007). Dynamic spatial reasoning capability in a graphical interface evaluation tool. In R. L. Lewis, T. A. Polk, & J. E. Laird (Eds.), Proceedings of the 8th International Conference on Cognitive Modeling (pp. 5559). Ann Arbor: University of Michigan.
  • Pinker, S. (1990). A theory of graph comprehension. In R. Feedle (Ed.), Artificial intelligence and the future of testing (pp. 73126). Marwah, NJ: Erlbaum Hillsdale.
  • Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: a critique of mental imagery. Psychology Bulletin, 80, 124.
  • Pylyshyn, Z. W. (2002). Mental imagery: In search of a theory. Behavioral and Brain Science, 25, 157238.
  • Shepard, R., & Metzler, J. (1971). Mental rotation of three dimensional objects. Science, 171(972), 701703.
  • Simkin, D., & Hastie, R. (1987). An information-processing analysis of graph perception. Journal of the American Statistical Association, 82(398), 454465.
  • Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning: Logic and implementation. Cognitive Science, 19(1), 97140.
  • Stevens, A., & Coupe, H. P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10(4), 526550.
  • Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997). CaMeRa: A computational model of multiple representations. Cognitive Science, 21(3), 305350.
  • Trafton, J. G., & Tricket, S. B. (2006). Toward a comprehensive model of graph comprehension: Making the case for spatial cognition. In D. Barker-Plummer, R. Cox, & N. Swoboda (Eds.), Diagrammatic representation and inference (pp. 286300). Heidelberg: Springer-Verlag.
  • Tricket, S. B., & Trafton, J. G. (2004). Spatial transformations in graph comprehension. In A. F. Blackwell, K. Marriott, & A. Shimojima (Eds.), Diagrammatic representation and inference (pp. 372375). Heidelberg: Springer-Verlag.
  • Ullman, S. (1984). Visual routines. Cognition, 18, 97159.