SEARCH

SEARCH BY CITATION

Keywords:

  • Complexity;
  • Self-organization;
  • Dynamical systems;
  • Modeling;
  • Explanation;
  • Constraint satisfaction;
  • NP-hard;
  • Intractable

Abstract

Four articles in this issue of topiCS (volume 4, issue 1) argue against a computational approach in cognitive science in favor of a dynamical approach. I concur that the computational approach faces some considerable explanatory challenges. Yet the dynamicists’ proposal that cognition is self-organized seems to only go so far in addressing these challenges. Take, for instance, the hypothesis that cognitive behavior emerges when brain and body (re-)configure to satisfy task and environmental constraints. It is known that for certain systems of constraints, no procedure can exist (whether modular, local, centralized, or self-organized) that reliably finds the right configuration in a realistic amount of time. Hence, the dynamical approach still faces the challenge of explaining how self-organized constraint satisfaction can be achieved by human brains and bodies in real time. In this commentary, I propose a methodology that dynamicists can use to try to address this challenge.