Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses


Dr Jonathan Hillier, tel. +44 1224 273810, fax +44 1224 272703, e-mail:


Accurate estimation of the greenhouse gas (GHG) mitigation potential of bioenergy crops requires the integration of a significant component of spatially varying information. In particular, crop yield and soil carbon (C) stocks are variables which are generally soil type and climate dependent. Since gaseous emissions from soil C depend on current C stocks, which in turn are related to previous land management it is important to consider both previous and proposed future land use in any C accounting assessment. We have conducted a spatially explicit study for England and Wales, coupling empirical yield maps with the RothC soil C turnover model to simulate soil C dynamics. We estimate soil C changes under proposed planting of four bioenergy crops, Miscanthus (Miscanthus×giganteus), short rotation coppice (SRC) poplar (Populus trichocarpa Torr. & Gray ×P. trichocarpa, var. Trichobel), winter wheat, and oilseed rape. This is then related to the former land use – arable, pasture, or forest/seminatural, and the outputs are then assessed in the context of a life cycle analysis (LCA) for each crop. By offsetting emissions from management under the previous land use, and considering fossil fuel C displaced, the GHG balance is estimated for each of the 12 land use change transitions associated with replacing arable, grassland, or forest/seminatural land, with each of the four bioenergy crops. Miscanthus and SRC are likely to have a mostly beneficial impact in reducing GHG emissions, while oilseed rape and winter wheat have either a net GHG cost, or only a marginal benefit. Previous land use is important and can make the difference between the bioenergy crop being beneficial or worse than the existing land use in terms of GHG balance.