SEARCH

SEARCH BY CITATION

References

  • AEBIOM (2010) European Biomass Statistics, p. 75. European Biomass Association, Brussels.
  • Amougou N, Bertrand I, Machet J-M, Recous S (2011) Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus x giganteus, as affected by harvest date and N fertilization. Plant and Soil, 338, 8397.
  • Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy, 1, 7596.
  • Armstrong AP, Baro J, Dartoy J, Groves AP, Nikkonen J, Rickeard DJ (2002) CONCAWE Ad Hoc Group on Alternative Fuels, Vol. 2/2002. CONCAWE. Available at: http://www.concawe.be (accessed 8 August 2011).
  • Aslyng HC (1965) Evaporation, evapotranspiration and water balance investigation at Copenhagen 1955-64. ACTA Agriculturae Scandinavica, 15, 284300.
  • Aulakh MS, Rennie DA, Paul EA (1984) Gaseous nitrogen losses from soils under zero-till as compared with conventional-till management-systems. Journal of Environmental Quality, 13, 130136.
  • Baitz M, Binder M, Degen W, Deimling S, Krinke S, Rudloff M (2004) Comparative Life-Cycle Assessment for SunDiesel (Choren Process) and Conventional Diesel Fuel. Volkswagen AG and DaimlerChrysler AG, Available at: http://www.volkswagenag.com/vwag/vwcorp/info_center/en/publications/2004/09/SunFuel__Life_Cycle_Assessment.-bin.acq/qual-BinaryStorageItem.Single.File/sunfuel_english.pdf (accessed 8 August 2011).
  • Ball BC, Scott A, Parker JP (1999) Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil & Tillage Research, 53, 2939.
  • Bernardo AL, Reis MGF, Reis GG, Harrison RB, Firme DJ (1998) Effect of spacing on growth and biomass distribution in Eucalyptus camaldulensis, E-pellita and E-urophylla plantations in southeastern Brazil. Forest Ecology and Management, 104, 113.
  • Berndes G (2002) Bioenergy and water - the implications of large-scale bioenergy production for water use and supply. Global Environmental Change-Human and Policy Dimensions, 12, 253271.
  • Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass & Bioenergy, 25, 128.
  • Birch CJ, Vos J, van der Putten PEL (2003) Plant development and leaf area production in contrasting cultivars of maize grown in a cool temperate environment in the field. European Journal of Agronomy, 19, 173188.
  • Block RMA, Rees KCJ, Knight JD (2006) A review of fine root dynamics in Populus plantations. Agroforestry Systems, 67, 7384.
  • Boehmel C, Lewandowski I, Claupein W (2008) Comparing annual and perennial energy cropping systems with different management intensities. Agricultural Systems, 96, 224236.
  • Boman UR, Turnbull JH (1997) Integrated biomass energy systems and emissions of carbon dioxide. Biomass & Bioenergy, 13, 333343.
  • Borek R, Faber A, Kozyra J (2010) Water implications of selected energy crops cultivated on a field scale. Journal of Food Agriculture & Environment, 8, 13451351.
  • Bowyer C (2010) Anticipated Indirect Land Use Change Associated with Expanded Use of Biofuels and Bioliquids in the EU – An Analysis of the National Renewable Energy Action Plans, p. 24. Institute for European Environmental Policy IEEP, London.
  • Bullard MJ, Mustill SJ, McMillan SD, Nixon PMI, Carver P, Britt CP (2002) Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp - 1. Yield response in two morphologically diverse varieties. Biomass & Bioenergy, 22, 1525.
  • Burniaux J-M, Truong TP (2002) GTAP-E: an energy-environmental version of the GTAP model. In GTAP Technical Paper Vol. 16. West Lafayette, USA.
  • Cannell MGR (2003) Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass & Bioenergy, 24, 97116.
  • Ceulemans R, McDonald AJS, Pereira JS (1996) A comparison among eucalypt, poplar and willow characteristics with particular reference to a coppice, growth-modelling approach. Biomass & Bioenergy, 11, 215231.
  • Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Industrial Crops and Products, 28, 320327.
  • Ciais P, Wattenbach M, Vuichard N et al. (2010) The European carbon balance Part 2: croplands. Global Change Biology, 16, 14091428.
  • Clifton-Brown JC, Lewandowski I, Andersson B et al. (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agronomy Journal, 93, 10131019.
  • Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, Miscanthus. Global Change Biology, 13, 22962307.
  • Coleman MD, Isebrands JG, Tolsted DN, Tolbert VR (2004) Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Environmental Management, 33, S299S308.
  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1, 285292.
  • Crow P, Houston TJ (2004) The influence of soil and coppice cycle on the rooting habit of short rotation poplar and willow coppice. Biomass & Bioenergy, 26, 497505.
  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 8, 389395.
  • Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes (eds Rogers JE, Whitman WB), pp. 219235. American Society for Microbiology, Washington, DC.
  • Dimitriou I, Busch G, Jacobs S, Schmidt-Walter P, Lamersdorf N (2009) A review of the impacts of Short Rotation Coppice cultivation on water issues. Landbauforschung Volkenrode, 59, 197206.
  • Dobbie KE, Smith KA (1996) Comparison of CH4 oxidation rates in woodland, arable and set aside soils. Soil Biology & Biochemistry, 28, 13571365.
  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology, 17, 16581670.
  • Dondini M, Hastings A, Saiz G, Jones MB, Smith P (2009) The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. Global Change Biology Bioenergy, 1, 413425.
  • Dornburg V, van Vuuren D, van de Ven G et al. (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy & Environmental Science, 3, 258267.
  • Dowell RC, Gibbins D, Rhoads JL, Pallardy SG (2009) Biomass production physiology and soil carbon dynamics in short-rotation-grown Populus deltoides and P. deltoides x P. nigra hybrids. Forest Ecology and Management, 257, 134142.
  • Edwards R, Mulligan D, Marelli L (2010) Indirect Land Use Change from Increased Biofuels Demand - Comparison of Models and Results for Marginal Biofuels Production from Different Feedstocks. European Commission Joint Research Centre, Ispra.
  • EEA (2006) How Much Bioenergy Can Europe Produce Without Harming the Environment? p. 67. European Environmental Agency, Copenhagen.
  • Eggers J, Troltzsch K, Falcucci A et al. (2009) Is biofuel policy harming biodiversity in Europe? Global Change Biology Bioenergy, 1, 1834.
  • Ericsson K, Rosenqvist H, Ganko E, Pisarek M, Nilsson L (2006) An agro-economic analysis of willow cultivation in Poland. Biomass & Bioenergy, 30, 1627.
  • EU (2007) The Impact of a Minimum 10% Obligation for Biofuel Use in the EU-27 in 2020 on Agricultural Markets, Vol. AGRI G-2/WM D, p. 10. European Commission, Brussels.
  • EU (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. O. J. o. t. E. Union (ed Union OjotE). EU, Brussels.
  • Eulenstein F, Merbach W, von Buttlar C, Augustin J, Werner A (2011) Potenzielle Klimawirkung des Anbaus von Pflanzen zur Erzeugung von Biomasse für, Biokraftstoffé Aufgrund Klimawirksamer Gasemissionen und Weitere Umweltwirkungen, p. 135. Leibnitz Centre for Agricultural Landscape Research (ZALF), Müncheberg.
  • EurObserv'ER (2010) Biogas Barometer. In System Solaires le journal des energies renouvelables, Vol. 200, pp. 104–119. Available at: http://www.eurobserv-er.org/pdf/baro200b.pdf (accessed 8 August 2011).
  • European Biodiesel Board (2010) Production of Biodiesel in the EU. Brussels. Available at: http://www.plateforme-biocarburants.ch/en/infos/eu-biodiesel.php (accessed 8 August 2011).
  • Evans S, Baldwin M, Henshall P et al. (2007) Final report: yield models for energy: coppice of poplar and willow. In: Report to DTI, Vol. B/W2/00624/00/00 URN. (edsTubby I, Poole J), p. 91.
  • Ewert F (2004) Modelling plant responses to elevated CO2: How important is leaf area index? Annals of Botany, 93, 619627.
  • FAO (2008) The State of Food and Agriculture - Biofuels Prospects, Risk and Opportunities. FAO, Rome.
  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science, 319, 12351238.
  • Finch JW, Hall RL, Rosier PTW et al. (2004) The Hydrological Impacts of Energy Crop Production in the UK. Final Report, p. 151. Department of Trade and Industry, London.
  • Fischer G, Schrattenholzer L (2001) Global bioenergy potentials through 2050. Biomass & Bioenergy, 20, 151159.
  • Flessa H, Dorsch P, Beese F (1995) Seasonal-variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. Journal of Geophysical Research-Atmospheres, 100, 2311523124.
  • Flessa H, Beese F, Brumme R, Priesack E, Przemeck E, Lay JP (1998) Freisetzung und Verbrauch der Klimarelevanten Spurengase N2O und CH4 Beim Anbau Nachwachsender Rohstoffe, p. 133. Zeller Verlag, Osnabrück, Germany.
  • FNR (2010) Annual Report 2009/2010, p. 104. FNR (Agency for Renewable Resources), Gülzow.
  • Forster P, Ramaswamy V, Artaxo P et al. (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M et al.), p. 106. Cambridge University Press, Cambridge.
  • Fritsche U (2007) GHG accounting for biofuels: considering CO2 from leakage. In Working paper prepared for BMU.Oeko-Institut, Darmstadt.
  • Fritsche UR, Wiegmann K (2008) Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen, Berlin.
  • Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production - an overview. Biofuels Bioproducts & Biorefining-Biofpr, 4, 692704.
  • Gerbens-Leenes PW, Hoekstra AY, van der Meer T (2009) The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecological Economics, 68, 10521060.
  • Gerin PA, Viiegen F, Jossart JM (2008) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology, 99, 26202627.
  • Gielen B, Calfapietra C, Lukac M et al. (2005) Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology, 25, 13991408.
  • Grace J (2005) Role of forest biomes in the global carbon balance. In: The Carbon Balance of Forest Biomes, Chapter 2. (eds Griffiths H, Jarvis PG), pp. 1948. Taylor and Francis Group, Abingdon.
  • Grigal DF, Berguson WE (1998) Soil carbon changes associated with short-rotation systems. Biomass & Bioenergy, 14, 371377.
  • Guidi W, Piccioni E, Bonari E (2008) Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter. Bioresource Technology, 99, 48324840.
  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8, 345360.
  • Hadas A, Kautsky L, Goek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biology & Biochemistry, 36, 255266.
  • Hansen EA (1993) Soil carbon sequestration beneath hybrid poplar plantations in the north central united-states. Biomass & Bioenergy, 5, 431436.
  • Hansen S, Mæhlum JE, Bakken LR (1993) N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic. Soil Biology and Biochemistry, 25, 621630.
  • Hansen EM, Christensen BT, Jensen LS, Kristensen K (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by C-13 abundance. Biomass & Bioenergy, 26, 97105.
  • Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Stampfl P, Smith P (2009a) Future energy potential of Miscanthus in Europe. Global Change Biology Bioenergy, 1, 180196.
  • Hastings A, Clifton-Brown J, Wattenbach M, Mitchell P, Smith P (2009b) The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. Global Change Biology Bioenergy, 1, 154170.
  • Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass & Bioenergy, 27, 2130.
  • Heaton EA, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. Global Change Biology Bioenergy, 1, 297307.
  • Heilman P, Norby RJ (1998) Nutrient cycling and fertility management in temperate short rotation forest systems. Biomass & Bioenergy, 14, 361370.
  • Heinsoo K, Merilo E, Petrovits M, Koppel A (2009) Fine root biomass and production in a Salix viminalis and Salix dasyclados plantation. Estonian Journal of Ecology, 58, 2737.
  • Hellebrand HJ, Strähle M, Scholz V, Kern J (2010) Soil carbon, soil nitrate, and soil emissions of nitrous oxide during cultivation of energy crops. Nutrient Cycling in Agroecosystems, 87, 175186.
  • Hoefnagels R, Smeets E, Faaij A (2010) Greenhouse gas footprints of different biofuel production systems. Renewable & Sustainable Energy Reviews, 14, 16611694.
  • Holland EA, Braswell BH, Sulzman J, Lamarque JF (2005) Nitrogen deposition onto the United States and western Europe: synthesis of observations and models. Ecological Applications, 15, 3857.
  • Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of nitrous-oxide fluxes. Soil Science Society of America Journal, 45, 311316.
  • Hutsch BW (2001) Methane oxidation in non-flooded soils as affected by crop production - invited paper. European Journal of Agronomy, 14, 237260.
  • Hyvönen NP, Huttunen JT, Shurpali NJ, Tavi NM, Repo ME, Martikainen PJ (2009) Fluxes of nitrous oxide and methane on an abandoned peat extraction site: effect of reed canary grass cultivation. Bioresource Technology, 100, 47234730.
  • IEA (2010) IEA Statistics - Renewables Information 2010, p. 446. IEA, Paris.
  • IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories. (eds Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K). National Greenhouse Gas Inventories Programme, Kanagawa, Japan.
  • JEC (2008) Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context – Well-to-Wheels Study in Version 3. European Council for Automotive R&D (EUCAR), European association for environment, health and safety in oil refining and distribution (CONCAWE), the Institute for Environment and Sustainability of the EU Commission's Joint Research Centre (JRC/IES). Available at: http://ies.jrc.ec.europa.eu/uploads/media/V3.1%20TTW%20Report%2007102008.pdf (accessed 8 August 2011).
  • Jones MB, Walsh M (2001) Miscanthus for Energy and Fibre. James and James Ltd., London.
  • Jørgensen RN, Jørgensen BJ, Nielsen NE, Maag M, Lind AM (1997) N2O emission from energy crop fields of Miscanthus “Giganteus” and winter rye. Atmospheric Environment, 31, 28992904.
  • Jug A, Makeschin F, Rehfuess KE, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. Forest Ecology and Management, 121, 8599.
  • Jungkunst HF, Freibauer A, Neufeldt H, Bareth G (2006) Nitrous oxide emissions from agricultural land use in Germany - a synthesis of available annual field data. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 169, 341351.
  • Kahle P, Beuch S, Boelcke B, Leinweber P, Schulten HR (2001) Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. European Journal of Agronomy, 15, 171184.
  • Kahle P, Baum C, Boelcke B (2005) Effect of afforestation on soil properties and mycorrhizal formation. Pedosphere, 15, 754760.
  • Kahle P, Hildebrand E, Baum C, Boelcke B (2007) Long-term effects of short rotation forestry with willows and poplar on soil properties. Archives of Agronomy and Soil Science, 53, 673682.
  • Kaiser EA, Ruser R (2000) Nitrous oxide emissions from arable soils in Germany - An evaluation of six long-term field experiments. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 163, 249259.
  • Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytologist, 179, 1532.
  • Kauter D, Lewandowski I, Claupein W (2003) Quantity and quality of harvestable biomass from Populus short rotation coppice for solid fuel use - a review of the physiological basis and management influences. Biomass & Bioenergy, 24, 411427.
  • Keoleian GA, Volk TA (2005) Renewable energy from willow biomass crops: life cycle energy, environmental and economic performance. Critical Reviews in Plant Sciences, 24, 385406.
  • King GM, Schnell S (1994) Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature, 370, 282284.
  • Koga N (2008) An energy balance under a conventional crop rotation system in northern Japan: perspectives on fuel ethanol production from sugar beet. Agriculture Ecosystems & Environment, 125, 101110.
  • Körschens M, Weigel A, Schulz E (1998) Turnover of soil organic matter (SOM) and long-term balances - Tools for evaluating sustainable productivity of soils. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 161, 409424.
  • Lal R (2005) World crop residues production and implications of its use as a biofuel. Environment International, 31, 575584.
  • Larsen SU (2010) Videnscentret for Landbrug. Available at: http://www.landbrugsinfo.dk/Planteavl/Afgroeder/Energiafgroeder/Sider/pl_10_243.aspx (accessed 8 August 2011).
  • Lettens S, Muys B, Ceulemans R, Moons E, Garcia J, Coppin P (2003) Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production. Biomass & Bioenergy, 24, 179197.
  • Lewandowski I, Schmidt U (2006) Nitrogen, energy and land use efficiencies of Miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agriculture Ecosystems & Environment, 112, 335346.
  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass & Bioenergy, 19, 209227.
  • Lewandowski I, Clifton-Brown JC, Andersson B et al. (2003a) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agronomy Journal, 95, 12741280.
  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003b) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass & Bioenergy, 25, 335361.
  • Lindroth A, Bath A (1999) Assessment of regional willow coppice yield in Sweden on basis of water availability. Forest Ecology and Management, 121, 5765.
  • Linn DM, Doran JW (1984) Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48, 12671272.
  • Makeschin F (1994) Effects of energy forest on soils. Biomass & Bioenergy, 6, 6379.
  • Malca J, Freire F (2009) Energy and environmental benefits of rapeseed oil replacing diesel. International Journal of Green Energy, 6, 287301.
  • Mao R, Zeng DH, Hu YL, Li LJ, Yang D (2010) Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant and Soil, 332, 277287.
  • Matthews RW (2001) Modelling of energy and carbon budgets of wood fuel coppice systems. Biomass & Bioenergy, 21, 119.
  • Matthews R, Henshall P, Tubby I (2002) In Contract Report to FC, DTI and Defra.
  • Monteith JL (1977) Climate and efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 281, 277294.
  • Monti A, Zatta A (2009) Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agriculture Ecosystems & Environment, 132, 252259.
  • Murphy JD, Power NM (2009) An argument for using biomethane generated from grass as a biofuel in Ireland. Biomass & Bioenergy, 33, 504512.
  • Neftel A, Ammann C, Fischer C et al. (2010) N2O exchange over managed grassland: application of a quantum cascade laser spectrometer for micrometeorological flux measurements. Agricultural and Forest Meteorology, 150, 775785.
  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and water assessment tool user's manual, Version 2000. TWRI Report TR-192. Texas Water Resources Institute, Temple, Texas.
  • Neukirchen D, Himken M, Lammel J, Czypionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. European Journal of Agronomy, 11, 301309.
  • Obersteiner M, Bottcher H, Yamagata Y (2010) Terrestrial ecosystem management for climate change mitigation. Current Opinion in Environmental Sustainability, 2, 271276.
  • Oliver RJ, Finch JW, Taylor G (2009) Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and the implications for yield. Global Change Biology Bioenergy, 1, 97114.
  • Ozdemir ED, Hardtlein M, Eltrop L (2009) Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets. Energy Policy, 37, 29862996.
  • Palm CA, Woomer PL, Alegre J et al. (1999) Carbon Sequestration and Trace as Emissions in Slash-and-Burn and Alternative Land Uses in the Humid Tropics. (ed GROUP ACCW), Nairobi, Kenya.
  • Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Critical Reviews in Plant Sciences, 24, 423459.
  • Patzek TW (2004) Thermodynamics of the corn-ethanol biofuel cycle. Critical Reviews in Plant Sciences, 23, 519567.
  • Perttu KL (1999) Environmental and hygienic aspects of willow coppice in Sweden. Biomass & Bioenergy, 16, 291297.
  • Peterson CL, Hustrulid T (1998) Carbon cycle for rapeseed oil biodiesel fuels. Biomass & Bioenergy, 14, 91101.
  • Pimental D, Patzek T (2005) Ethanol production using corn, switchgrass and wood: biodiesel production using soybean and sunflower. Natural Resources Research, 14, 6576.
  • Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach. Global Change Biology, 17, 24152427.
  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6, 317327.
  • Quirin M, Gärtner S, Pehnt M, Reinhardt GA (2004) CO2Mitigation Through Biofuels in the Transport Sector - Status and Perspectives. Institute for Energy and Environmental Research, Heidelberg.
  • Robertson GP, Groffman PM (2007) Nitrogen transformation. In: Soil Microbiology, Biochemistry, and Ecology (ed Paul EA). Springer, New York.
  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science, 289, 19221925.
  • Rochette P (2008) No-till only increases N2O emissions in poorly-aerated soils. Soil & Tillage Research, 101, 97100.
  • Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renewable & Sustainable Energy Reviews, 13, 260279.
  • Ruser R, Flessa H, Schilling R, Beese F, Munch JC (2001) Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil. Nutrient Cycling in Agroecosystems, 59, 177191.
  • Rytter RM (2001) Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. Forest Ecology and Management, 140, 177192.
  • Sanderson MA, Adler PR (2008) Perennial forages as second generation bioenergy crops. International Journal of Molecular Sciences, 9, 768788.
  • Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agriculture Ecosystems & Environment, 122, 325339.
  • Schlamadinger B, Apps M, Bohlin F et al. (1997) Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass & Bioenergy, 13, 359375.
  • Schneckenberger K, Kuzyakov Y (2007) Carbon sequestration under Miscanthus in sandy and loamy soils estimated by natural C-13 abundance. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 170, 538542.
  • Scholz V (2010) Umweltverträglichkeit von Pappen und Weiden im Vergelich mit anderen Energiepflanzen. Agrarholz, 15. Available at: http://www.fnr-server.de/cms35/fileadmin/allgemein/pdf/veranstaltungen/Agrarholz2010/08_2_Beitrag_Scholz.pdf (accessed 8 August 2011).
  • Scholz V, Ellerbrock R (2002) The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass & Bioenergy, 23, 8192.
  • Searchinger T, Heimlich R, Houghton RA et al. (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319, 12381240.
  • Searchinger TD, Hamburg SP, Melillo J et al. (2009) Fixing a critical climate accounting error. Science, 326, 527528.
  • Shoji S, Kurebayashi T, Yamada I (1990) Growth and chemical-composition of japanese pampas grass (Miscanthus-sinensis) with special reference to the formation of dark-colored andisols in northeastern japan. Soil Science and Plant Nutrition, 36, 105120.
  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresource Technology, 101, 15701580.
  • Skiba U, Smith KA (2000) The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere - Global Change Science, 2, 379386.
  • Smeets EMW, Bouwman LF, Stehfest E, Van Vuuren DP, Posthuma A (2009) Contribution of N2O to the greenhouse gas balance of first-generation biofuels Global Change Biology, 15, 123.
  • Smith GA, Buxton DR (1993) Temperate zone sweet sorghum ethanol-production potential. Bioresource Technology, 43, 7175.
  • Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use and Management, 20, 255263.
  • Smith P, Gregory PJ, van Vuuren D et al. (2010) Competition for land. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 29412957.
  • St Clair S, Hillier J, Smith P (2008) Estimating the pre-harvest greenhouse gas costs of energy crop production. Biomass & Bioenergy, 32, 442452.
  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74, 207228.
  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 314, 15981600.
  • Venendaal R, Jorgensen U, Foster CA (1997) European energy crops: a synthesis. Biomass & Bioenergy, 13, 147185.
  • Vermeulen GD, Mosquera J (2009) Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil. Soil & Tillage Research, 102, 126134.
  • Vogel KP, Brejda JJ, Walters DT, Buxton DR (2002) Switchgrass biomass production in the Midwest USA: harvest and nitrogen management. Agronomy Journal, 94, 413420.
  • WBGU (2008) Future Bioenergy and Sustainable Land Use. (ed (WBGU) GACoGC). Earthscan, London.
  • Well R, Butterbach-Bahl K (2010) Indirect emissions of nitrous oxide from nitrogen deposition and leaching of agricultural nitrogen. In: Nitrous Oxide and Climate Change (ed Smith K), p. 162. Earthscan Publications Ltd., Sterling, UK.
  • Wichtmann W, Schäfer A (2007) Alternative management options for degraded fens – utilisation of biomass from rewetted peatlands. In: Wetlands: Monitoring, Modeling and Management (eds Okruszko T, Maltby E, Szatylowicz J, Swiatek D, Kotowski W), pp. 273279. Taylor & Francis/Balkema, Leiden, the Netherlands.
  • Williams JR, Jones CA, Kiniry JR, Spanel DA (1989) The epic crop growth-model. Transactions of the Asae, 32, 497511.
  • Wirsenius S, Azar C, Berndes G (2010) How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems, 103, 621638.
  • de Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass & Bioenergy, 34, 188202.
  • Woods J, Black M, Murphy R (2008) Future feedstocks for biofuel systems. In: Biofuels: Environmental Consequences and Interactions with Changing Land Use (eds Howarth RW, Bringezu S), pp. 207224. Cornell University, Ithaca, NY, USA.
  • Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agriculture Ecosystems & Environment, 86, 135144.
  • Zegada-Lizarazu W, Monti A (2011) Energy crops in rotation. A review. Biomass & Bioenergy, 35, 1225.
  • Zegada-Lizarazu W, Elbersen HW, Cosentino SL, Zatta A, Alexopoulou E, Monti A (2010) Agronomic aspects of future energy crops in Europe. Biofuels, Bioproducts and Biorefining, 4, 674691.