The aim of this study was to detect and quantify Vibrio parahaemolyticus using flow cytometry (FCM) in combination with a polyclonal antibody developed in our laboratory. Experiments were carried out using V. parahaemolyticus cells in pure and mixed bacteria culture suspensions in either artificial or natural seawater. Using FCM, V. parahaemolyticus cells labelled with the polyclonal antibody and a secondary fluorescein isothiocyanate-conjugated antibody were detected and rapidly quantified at low cell densities (103 cells ml−1) in both the pure and mixed cultures. To determine the specificity of our antibody, its cross-reactivity with other ATCC bacterial strains and some environmental Vibrio spp. and Gram-positive isolates was also assessed. Significant immunoreactivity levels above background were obtained for V. harvey 64, V. parahaemolyticus 704 and V. alginolyticus 1407, although the intensities were significantly less than for V. parahaemolyticus Conero. The experiments carried out in natural seawater confirmed the antibody specificity towards V. parahaemolyticus Conero even if a lower proportion of labelled cells was observed. The application of FCM in combination with a primary polyclonal antibody appears to be a promising technique for the detection and quantification of V. parahaemolyticus cells in aquatic environments.