• 1
    Cabrales P, Tsai AG, Intaglietta M. Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity? Shock 2007; 27: 3809.
  • 2
    Cabrales P, Tsai AG, Intaglietta M. Hemorrhagic shock resuscitation with carbon monoxide saturated blood. Resuscitation 2007; 72: 30618.
  • 3
    Cabrales P, Intaglietta M, Tsai AG. Transfusion restores blood viscosity and reinstates microvascular conditions from hemorrhagic shock independent of oxygen carrying capacity. Resuscitation 2007; 75: 12434.
  • 4
    Moore FA, McKinley BA, Moore EE. The next generation in shock resuscitation. Lancet 2004; 363: 198896.
  • 5
    Welch HG, Meehan KR, Goodnough LT. Prudent strategies for elective red blood cell transfusion. Ann Intern Med 1992; 116: 393402.
  • 6
    Dubick MA, Atkins JL. Small-volume fluid resuscitation for the far-forward combat environment: current concepts. J Trauma 2003; 54: S435.
  • 7
    Kerger H, Saltzman DJ, Menger MD, Messmer K, Intaglietta M. Systemic and subcutaneous microvascular pO2 dissociation during 4-h hemorrhagic shock in conscious hamsters. Am J Physiol 1996; 270: H827–36.
  • 8
    Tsai AG, Friesenecker B, McCarthy M, Sakai H, Intaglietta M. Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skin fold model. Am J Physiol 1998; 275: H2170–80.
  • 9
    Cabrales P, Martini J, Intaglietta M, Tsai AG. Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity. Am J Physiol Heart Circ Physiol 2006; 291: H581–90.
  • 10
    Messmer K. Hemodilution. Surg Clins N Am 1975; 55: 65978.
  • 11
    Richardson TQ, Guyton AC. Effects of polycythemia and anemia on cardiac output and other circulatory factors. Am J Physiol 1959; 197: 116770.
  • 12
    Messmer K, Kreimeier U, Intaglietta M. Present state of intentional hemodilution. Europ Surg Res 1986; 18: 25463.
  • 13
    Cabrales P, Tsai AG, Intaglietta M. Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution. Am J Physiol 2005; 288: H1708–16.
  • 14
    Cabrales P, Tsai AG, Intaglietta M. Microvascular pressure and functional capillary density in extreme hemodilution with low and high plasma viscosity expanders. Am J Physiol 2004; 287: H363–73.
  • 15
    Cabrales P, Nacharaju P, Manjula BN, et al. Early difference in tissue pH and microvascular hemodynamics in hemorrhagic shock resuscitation using polyethylene glycol-albumin- and hydroxyethyl starch-based plasma expanders. Shock 2005; 24: 6673.
  • 16
    Olofsson C, Ahl T, Johansson T, et al. A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified Hemoglobin (Hemospan) in patients undergoing major orthopedic surgery. Anesthesiology 2006; 105: 115363.
  • 17
    Smiesko V, Lang DJ, Johnson PC. Dilator response of rat mesenteric arcading arterioles to increased blood flow. Am J Physiol 1989; 257: H1958–65.
  • 18
    Tsai AG, Acero C, Nance PR, et al. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 2005; 288: H1730–9.
  • 19
    Buerk DG, Lamkin-Kennard K, Jaron D. Modeling the influence of superoxide dismutase on superoxide and nitric oxide interactions, including reversible inhibition of oxygen consumption. Free Radic Biol Med 2003; 34: 1488503.
  • 20
    Cabrales P, Tsai AG, Intaglietta M. Hyperosmotic-hyperoncotic vs. hyperosmotic-hyperviscous small volume resuscitation in hemorrhagic shock. Shock 2004; 22: 4317.
  • 21
    Cabrales P, Intaglietta M, Tsai AG. Increase plasma viscosity sustains microcirculation after resuscitation from hemorrhagic shock and continuous bleeding. Shock 2005; 23: 54955.
  • 22
    Consensus conference. Perioperative red blood cell transfusion. JAMA 1988; 260: 27003.
  • 23
    Practice guidelines for blood component therapy: a report by the American society of anesthesiologists task force on blood component therapy. Anesthesiology 1996; 84: 73247.
  • 24
    Hovav T, Yedgar S, Manny N, Barshtein G. Alteration of red cell aggregability and shape during blood storage. Transfusion 1999; 39: 27781.
  • 25
    Berezina TL, Zaets SB, Morgan C, et al. Influence of storage on red blood cell rheological properties. J Surg Res 2002; 102: 612.
  • 26
    Haradin AR, Weed RI, Reed CF. Changes in physical properties of stored erythrocytes relationship to survival in vivo. Transfusion 1969; 9: 22937.
  • 27
    Dietrich KA, Conrad SA, Herbert CA, Levy Gl, Romero MD. Cardiovascular and metabolic response to red blood cell transfusion in critically ill volume resuscitated nonsurgical patients. Crit Care Med 1990; 18: 9404.
  • 28
    Marik PE, Sibbald WJ. Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 1993; 269: 30249.
  • 29
    Weiskopf RB, Feiner J, Hopf HW, et al. Oxygen reverses deficits of cognitive function and memory and increased heart rate induced by acute severe isovolemic anemia. Anesthesiology 2002; 96: 8717.
  • 30
    Weiskopf RB, Feiner J, Hopf H, et al. Fresh blood and aged stored blood are equally efficacious in imeediately reversing anemia -induced brain oxygenation deficits in humans. Anesthesiology 2006; 104: 91120.
  • 31
    Hérbert PC, Chin-Yee I, Fergusson D, et al. A pilot trial evaluating the clinical effects of prolonged storage of red cells. Anesth Anal 2005; 100: 143358.
  • 32
    Tinmouth A, Fergusson D, Yee IC, Hebert PC. Clinical consequences of red cell storage in the critically ill. Transfusion 2006; 46: 201427.
  • 33
    Tsai AG, Cabrales P, Intaglietta M. Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions. Transfusion 2004; 44: 162634.
  • 34
    Cabrales P. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia. Am J Physiol Heart Circ Physiol 2007; 293: H120615.
  • 35
    Seyama A. The role of oxygen-derived free radicals and the effect of free radical scavengers on skeletal muscle ischemia/reperfusion injury. Surg and Today 1993; 23: 10607.
  • 36
    Otani H, Jesmin S, Togashi H, et al.An S-nitrosylated hemoglobin derivative protects the rat hippocampus from ischemia-induced long-term potentiation impairment with a time window. J Pharmacol Sci 2004; 96: 18898.
  • 37
    Childs EW, Udobi KF, Wood JG, et al. In vivo visualization of reactive oxidants and leukocyte-endothelial adherence following hemorrhagic shock. Shock 2002; 18: 4237.
  • 38
    Maier M, Ströbele H, Voges J, Bauer C, Marzi I. Attenuation of leukocyte adhesion by recombinant TNF-binding protein after hemorrhagic shock in the rat. Shock 2003; 19: 45761.
  • 39
    Tsai AG, Cabrales P, Intaglietta M. Blood viscosity: a factor in tissue survival? Crit Care Med 2005; 33: 16623.
  • 40
    Abuchowski A, McCoy JR, Palczuk NC, Van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 1977; 252: 35826.
  • 41
    Assaly RA, Azizi M, Kennedy D, et al. Plasma expansion by polyethylene-glycol-modified-albumin. Clin Sci 2004; 107: 26372.
  • 42
    Young MA, Riddez L, Kjellstrom BT, et al. MalPEG-hemoglobin (MP4) improves hemodynamics, acid-base status, and survival after uncontrolled hemorrhage in anesthetized swine. Crit Care Med 2005; 33: 1794804.
  • 43
    Winslow RM, Lohman J, Malavalli A, VandegriffKD. Comparison of PEG-modified albumin and hemoglobin in extreme hemodilution in the rat. J Appl Physiol 2004; 97: 152734.
  • 44
    Cabrales P, Tsai AG, Winslow RM, IntagliettaM. Extreme hemodilution with PEG-hemoglobin vs. PEG-albumin. Am J Physiol 2005; 289: H2392400.