• alpine;
  • bighorn sheep;
  • biogeochemistry shift;
  • climate change;
  • nitrogen;
  • water acidification

ABSTRACT. The presence of a seasonal snowpack in alpine environments can amplify climate signals. A conceptual model is developed for the response of alpine ecosystems in temperate, midlatitude areas to changes in energy, chemicals, and water, based on a case study from Green Lakes Valley–Niwot Ridge, a headwater catchment in the Colorado Front Range. A linear regression shows the increase in annual precipitation of about 300 millimeters from 1951 to 1996 to be significant. Most of the precipitation increase has occurred since 1967. The annual deposition of inorganic nitrogen in wetfall at the Niwot Ridge National Atmospheric Deposition Program site roughly doubled between 1985–1988 and 1989–1992. Storage and release of strong acid anions, such as those from the seasonal snowpack in an ionic pulse, have resulted in episodic acidification of surface waters. These biochemical changes alter the quantity and quality of organic matter in high-elevation catchments of the Rocky Mountains. Affecting the bottom of the food chain, the increase in nitrogen deposition may be partly responsible for the current decline of bighorn sheep in the Rocky Mountains.