• 1
    Current WL. Cryptosporidiosis. J Am Vet Med Assoc 1985;187:13341338.
  • 2
    Guerrant RL. Cryptosporidiosis: An emerging, highly infectious threat. Emerg Infect Dis 1997;3:5157.
  • 3
    Division of Child Health and Development. Improving Child Health. IMCI: The Integrated Approach. Geneva , Switzerland : World Health Organization; 1997.
  • 4
    MacKenzie WR, Hoxie NJ, Proctor ME. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N Engl J Med 1994;331:161167.
  • 5
    National Dairy Heifer Evaluation Project. Dairy Herd Management Practices Focused on Preweaned Heifers, Part 1. Fort Collins , CO : United States Department of Agriculture and Animal and Plant Health Inspection Service; 1993.
  • 6
    DxMonitor Animal Health Report. Etiologic Agents Associated with Calf Diarrhea. Fort Collins , CO : United States Department of Agriculture and Animal and Plant Health Inspection Service; 1992.
  • 7
    National Dairy Heifer Evaluation Project. Dairy Heifer Morbidity, Mortality, and Health Management Focusing on Preweaned Heifers: April 1991-July 1992. Fort Collins , CO : United States Department of Agriculture and Animal and Plant Health Inspection Service; 1994.
  • 9
    Lopez-Velez R, Tarazona R, Garcia Camacho A, et al. Intestinal and extraintestinal cryptosporidiosis in AIDS patients. Eur J Clin Mi-crobiol Infect Dis 1995;14:677681.
  • 10
    Cosyns M, Tsirkin S, Jones M, et al. Requirement for CD40-CD40 ligand interaction for elimination of Cryptosporidium parvum from mice. Infect Immun 1998;66:603607.
  • 11
    Mead JR, You X. Susceptibility differences to Cryptosporidium parvum infection in two strains of gamma interferon knockout mice. J Parasitol 1998;84:10451048.
  • 12
    Stephens J, Cosyns M, Jones M, et al. Liver and bile duct pathology following Cryptosporidium parvum infection of immunodefi-cient mice. Hepatology 1999;30:2735.
  • 13
    Barr SC. Cryptosporidiosis and cyclosporiasis. In: GreeneCE, ed. Infectious Diseases of the Dog and Cat. Philadelphia , PA : WB Saunders; 1998: 518524.
  • 14
    Clark DP. New insights into human cryptosporidiosis. Clin Mi-crobiol Rev 1999;12:554563.
  • 15
    Adams RB, Guerrant RL, Zu S, et al. Cryptosporidium parvum infection of intestinal epithelium: Morphologic and functional studies in an in vitro model. J Infect Dis 1994;169:170177.
  • 16
    Laurent F, Eckmann L, Savidge TC, et al. Cryptosporidium parvum infection of human intestinal epithelial cells induces the polarized secretion of C-X-C chemokines. Infect Immun 1997;65:50675073.
  • 17
    Chen XM, LaRusso NF. Mechanisms of attachment and inter-nalization of Cryptosporidium parvum to biliary and intestinal epithelial cells. Gastroenterology 2000; 118:368379.
  • 18
    Langer RC, Riggs MW. Cryptosporidium parvum apical complex glycoprotein CSL contains a sporozoite ligand for intestinal epithelial cells. Infect Immun 1999;67:52825291.
  • 19
    Nesterenko MV, Woods K, Upton SJ. Receptor/ligand interactions between Cryptosporidium parvum and the surface of the host cell. Biochem Biophys Acta 1999;1454:165173.
  • 20
    Joe A, Verdon R, Tzipori S, et al. Attachment of Cryptosporidium parvum sporozoites to human intestinal epithelial cells. Infect Immun 1998;66:34293432.
  • 21
    Chen XM, Levine SA, Tietz P, et al. Cryptosporidium parvum is cytopathic for cultured human biliary epithelia via an apoptotic mechanism. Hepatology 1998;28:906913.
  • 22
    Marcial MA, Madara JL. Cryptosporidium: Cellular localization, structural analysis of absorptive cell-parasite membrane-membrane interactions in guinea pigs, and suggestion of protozoan transport by M cells. Gastroenterology 1986;90:583594.
  • 23
    Tzipori S, Widmer G. The biology of Cryptosporidium. Contrib Microbiol 2000;6:132.
  • 24
    Elliott DA, Clark DP. Cryptosporidium parvum induces host cell actin accumulation at the host-parasite interface. Infect Immun 2000; 68:23152322.
  • 25
    Bonnin A, Lapillonne A, Petrella T, et al. Immunodetection of the microvillus cytoskeleton molecules villin and ezrin in the parasi-tophorous vacuole wall of Cryptosporidium parvum. Eur J Cell Biol 1999;78:794801.
  • 26
    Forney JR, DeWald DB, Yang S, et al. A role for host phos-phoinositide 3-kinase and cytoskeletal remodeling during Cryptosporidium parvum infection. Infect Immun 1999;67:844852.
  • 27
    Perkins ME, Riojas YA, Wu TW, et al. CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host-parasite boundary in intracellular stages. Proc Natl Acad Sci USA 1999;96:57345739.
  • 28
    Argenzio RA, Liacos JA, Levy ML, et al. Villous atrophy, crypt hyperplasia, cellular infiltration, and impaired glucose-Na absorption in enteric cryptosporidiosis of pigs. Gastroenterology 1990;98:11291140.
  • 29
    Griffiths JK, Moore R, Dooley S, et al. Cryptosporidium parvum infection of Caco-2 cell monolayers induces an apical monolayer defect, selectively increases transmonolayer permeability, and causes epithelial cell death. Infect Immun 1994;62:45064514.
  • 30
    Planchon SM, Martins CAP, Guerrant RL, et al. Regulation of intestinal epithelial barrier function by TGF-β1. Evidence for its role in abrogating the effect of a T cell cytokine. J Immunol 1994;153:57305739.
  • 31
    Goodgame RW, Kimball K, Ou CN, et al. Intestinal function and injury in acquired immunodeficiency syndrome-related cryptosporidiosis. Gastroenterology 1995;108:10751082.
  • 32
    Moore R, Tzipori S, Griffiths JK, et al. Temporal changes in permeability and structure of piglet ileum after site-specific infection by Cryptosporidium parvum. Gastroenterology 1995;108:10301039.
  • 33
    Capet C, Kapel N, Huneau JF, et al. Cryptosporidium parvum infection in suckling rats: Impairment of mucosal permeability and Na+-glucose cotransport. Exp Parasitol 1999;91:119125.
  • 34
    Chen XM, Gores GJ, Paya CV, et al. Cryptosporidium parvum induces apoptosis in biliary epithelia by a Fas/Fas ligand-dependent mechanism. Am J Physiol 1999;277:G599G608.
  • 35
    McCole DF, Eckmann L, Laurent F, et al. Intestinal epithelial cell apoptosis following Cryptosporidium parvum infection. Infect Immun 2000;68:17101713.
  • 36
    Seydel KB, Zhang T, Champion GA, et al. Cryptosporidium parvum infection of human intestinal xenografts in SCID mice induces production of human tumor necrosis factor alpha and interleukin-8. Infect Immun 1998;66:23792382.
  • 37
    Kandil HM, Berschneider HM, Argenzio RA. Tumor necrosis factor-α changes porcine intestinal ion transport through a paracrine mechanism involving prostaglandins. Gut 1994;35:934940.
  • 38
    Argenzio RA, Rhoads JM. Reactive oxygen metabolites in piglet cryptosporidiosis. Pediatr Res 1997;41:521526.
  • 39
    Guarino A, Canani RB, Casola A, et al. Human intestinal cryptosporidiosis: Secretory diarrhea and enterotoxic activity in Caco-2 cells. J Infect Dis 1995;171:976983.
  • 40
    Kapel N, Huneau JF, Magne D, et al. Cryptosporidiosis-induced impairment of ion transport and Na+-glucose absorption in adult im-munocompromised mice. J Infect Dis 1997;176:834837.
  • 41
    Argenzio RA, Lecce J, Powell DW. Prostanoids inhibit intestinal NaCl absorption in experimental porcine cryptosporidiosis. Gastroenterology 1993; 104:440447.
  • 42
    Argenzio RA, Rhoads JM, Armstrong M, et al. Glutamine stimulates prostaglandin-sensitive Na+-H+ exchange in experimental porcine cryptosporidiosis. Gastroenterology 1994;106:14181428.
  • 43
    Argenzio RA, Armstrong M, Rhoads JM. Role of the enteric nervous system in piglet cryptosporidiosis. J Pharm Exp Ther 1996; 279:11091115.
  • 44
    Bern MJ, Sturbaum CW, Karayalcin SS, et al. Immune system control of rat and rabbit colonic electrolyte transport. Role of prostaglandins and the enteric nervous system. J Clin Invest 1989;83:18101820.
  • 45
    Laurent F, Kagnoff MF, Savidge TC, et al. Human intestinal epithelial cells respond to Cryptosporidium parvum infection with increased prostaglandin H synthase 2 expression and prostaglandin E2 and F production. Infect Immun 1998;66:17871790.
  • 46
    Moon HW, Kohler EM, Whipp SC. Vacuolation: A function of cell age in porcine ileal absorptive cells. Lab Invest 1973;28:2328.
  • 47
    Cho JH, Musch MW, DePaoli AM, et al. Glucocorticoids regulate Na/H exchange expression and activity in region and tissue-specific manner. Am J Physiol 1994;267:C796C803.
  • 48
    Kandil HM, Gray M, Armstrong M, et al. Interaction between PGE2 and tumor necrosis factor in porcine intestinal inflammation and damage. Gastroenterology 1994;106:A798.
  • 49
    Mead JR, Arrowood MJ, Sidwell RW, et al. Chronic Cryptosporidium parvum infection in congenitally immunodeficient SCID and nude mice. J Infect Dis 1991;163:12971304.
  • 50
    McDonald V, Deer R, Uni S, et al. Immune responses to Cryptosporidium muris and Cryptosporidium parvum in adult immunocom-petent or immunocompromised (nude and SCID) mice. Infect Immun 1992;60:33253331.
  • 51
    Kuhls TL, Greenfield RA, Mosier DA, et al. Cryptosporidiosis in adult and neonatal mice with severe combined immunodeficiency. J Comp Pathol 1992; 106:399410.
  • 52
    Rohlman VC, Kuhis TL, Mosier DA, et al. Cryptosporidium parvum infection after abrogation of natural killer cell activity in normal and severe combined immunodeficient mice. J Parasitol 1993;79:295297.
  • 53
    Chai J-Y, Guk S-M, Han H-K, et al. Role of intraepithelial lymphocytes in mucosal immune responses of mice experimentally infected with Cryptosporidium parvum. J Parasitol 1999;85:234239.
  • 54
    Culshaw RJ, Bancroft GJ, McDonald V. Gut intraepithelial lymphocytes induce immunity against Cryptosporidium infection through a mechanism involving gamma interferon production. Infect Immun 1997;65:30743079.
  • 55
    Taghi-Kilani R, Sekla L, Hayglass KT. The role of humoral immunity in Cryptosporidium spp. infection. Studies with B cell-depleted mice. J Immunol 1990;145:15711576.
  • 56
    Perryman LE, Mason PH, Chrisp CE. Effect of spleen cell populations on resolution of Cryptosporidium parvum infection in SCID mice. Infect Immun 1994;62:14741477.
  • 57
    Waters WR, Harp JA. Cryptosporidium parvum in T-cell receptor (TCR)-α- and TCR-δ-deficient mice. Infect Immun 1996; 64: 18541857.
  • 58
    Aguirre SA, Mason PH, Perryman LE. Susceptibility of major histocompatibility complex (MHC) class I- and MHC class II-deficient mice to Cryptosporidium parvum infection. Infect Immun 1994;62:697699.
  • 59
    McDonald V, Robinson HA, Kelly JP, et al. Immunity to Cryptosporidium muris infection in mice is expressed through gut CD4+ intraepithelial lymphocytes. Infect Immun 1996;64:25562562.
  • 60
    Wyatt CR, Brackett EJ, Perryman LE, et al. Activation of intestinal intraepithelial T lymphocytes in calves infected with Cryptosporidium parvum. Infect Immun 1997;65:185190.
  • 61
    Wyatt CR, Brackett EJ, Barrett WJ. Accumulation of mucosal T lymphocytes around epithelial cells after in vitro infection with Cryptosporidium parvum. J Parasitol 1999;85:765768.
  • 62
    Adjei AA, Curran BC, Castro M, et al. γδ+ T cells and 65-kDa heat shock protein expression following Cryptosporidium parvum challenge in athymic C57BL/6J nude mice. Immunol Lett 2000;72:3538.
  • 63
    Waters WR, Harp JA, Nonnecke BJ. Phenotypic analysis of peripheral blood lymphocytes and intestinal intra-epithelial lymphocytes in calves. Vet Immunol Immunopathol 1995;48:249259.
  • 64
    Ungar BLP, Kao TC, Burris AA, et al. Cryptosporidium infection in an adult mouse model: Independent roles for IFNγ and CD4+ T lymphocytes in protective immunity. J Immunol 1991;147:10141022.
  • 65
    Chen W, Harp JA, Harmsen AG. Requirements for CD4+ cells and gamma interferon in resolution of established Cryptosporidium parvum infection in mice. Infect Immun 1993;61:39283932.
  • 66
    Chen W, Harp JA, Harmsen AG, et al. Gamma interferon functions in resistance to Cryptosporidium parvum infection in severe combined immunodeficient mice. Infect Immun 1993;61:35483551.
  • 67
    Enriquez FJ, Sterling CR. Role of CD4+ Thl- and Th2-cell secreted cytokines in cryptosporidiosis. Fol Parasitol 1993;40:307311.
  • 68
    Urban JF, Fayer R, Chen SJ, et al. IL-12 protects immunocom-petent and immunodeficient neonatal mice against infection with Cryptosporidium parvum. J Immunol 1996;156:263268.
  • 69
    Aguirre SA, Perryman LE, Davis WC, et al. IL-4 protects adult C57BL/6 mice from prolonged Cryptosporidium parvum infection: Analysis of CD4+αβ+IFN–γ+ and CD4+αβ+IL-4+ lymphocytes in gut-associated lymphoid tissue during resolution of infection. J Immunol 1998;161:18911900.
  • 70
    Lukin K, Cosyns M, Mitchell T, et al. Eradication of Cryptosporidium parvum infection by mice with ovalbumin-specific T cells. Infect Immun 2000;68:26632670.
  • 71
    Griffiths JK, Theodos C, Paris M, et al. The gamma interferon gene knockout mouse: A highly sensitive model for evaluation of therapeutic agents against Cryptosporidium parvum. J Clin Microbiol 1998;36:25032508.
  • 72
    You X, Mead JR. Characterization of experimental Cryptosporidium parvum infection in IFN-γ knockout mice. Parasitology 1998; 117:525531.
  • 73
    Colgan SP, Parkos CA, Matthews JB, et al. Interferon-γ induces a cell surface phenotype switch on T84 intestinal epithelial cells. Am J Physiol 1994;267:C402C410.
  • 74
    Müerköster S, Laman JD, Rocha M, et al. Functional and in situ evidence for nitric oxide production driven by CD40-CD40L interactions in graft-versus-leukemia reactivity. Clin Cancer Res 2000; 6: 19881996.
  • 75
    Pollok RC, Farthing MJ, Bajaj-Elliott M, et al. Cellular mechanisms of interferon γ mediated inhibition of Cryptosporidium parvum infection. Gastroenterology 2000; 118: A817.
  • 76
    Dignass AU, Podolsky DK, Rachmilewitz D. NOX generation by cultured small intestinal epithelial cells. Dig Dis Sci 1995;40:18591865.
  • 77
    Foy TM, Aruffo A, Bajorath J, et al. Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996;14:591617.
  • 78
    Leitch GJ, He Q. Reactive nitrogen and oxygen species ameliorate experimental cryptosporidiosis in the neonatal BALB/c mouse model. Infect Immun 1999;67:58855891.
  • 79
    Leitch GJ, He Q. Arginine-derived nitric oxide reduces fecal oocyst shedding in nude mice infected with Cryptosporidium parvum. Infect Immun 1994;62:51735176.
  • 80
    Hayward AR, Chmura K, Cosyns M. Interferon-γ is required for innate immunity to Cryptosporidium parvum in mice. J Infect Dis 2000;182:10011004.
  • 81
    Kuhls TL, Mosier DA, Abrams VL, et al. Inability of interfer-on-gamma and aminoguanidine to alter Cryptosporidium parvum infection in mice with severe combined immunodeficiency. J Parasitol 1994;80:480485.
  • 82
    James SL. Role of nitric oxide in parasitic infections. Microbiol Rev 1995;59:533547.
  • 83
    Eckmann L, Laurent F, Langford TD, et al. Nitric oxide production by human intestinal epithelial cells and competition for argi-nine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. J Immunol 2000;164:14781487.
  • 84
    Brune B, von Knethen A, Sandau KB. Nitric oxide and its role in apoptosis. Eur J Pharmacol 1998;351:261272.
  • 85
    Miller MJS, Thompson JH, Zhang X-J, et al. Role of inducible nitric oxide synthase expression and peroxynitrite formation in guinea pig ileitis. Gastroenterology 1995;109:14751483.
  • 86
    Theodos CM, Sullivan KL, Griffiths JK, et al. Profiles of healing and nonhealing Cryptosporidium parvum infection in C57BL/6 mice with functional B and T lymphocytes: The extent of gamma interferon modulation determines the outcome of infection. Infect Immun 1997;65:47614769.
  • 87
    Smith LM, Bonafonte MT, Mead JR. Cytokine expression and specific lymphocyte proliferation in two strains of Cryptosporidium parvwm-infected gamma-interferon knockout mice. J Parasitol 2000; 86:300307.
  • 88
    Bellamy R. The natural resistance-associated macrophage protein and susceptibility to intracellular pathogens. Microbes Infect 1999;1:2327.
  • 89
    Feng J, Li Y, Hashad M, et al. Bovine natural resistance associated macrophage protein 1 (Nrampl) gene. Genome Res 1996;6:956964.