Dissemination and fractionation of projectile materials in the impact melts from Wabar Crater, Saudi Arabia



Abstract— We have analyzed small, ballistically dispersed melt samples in the form of aerodynamically shaped spheres, dumbbells, teardrops, etc., from Wabar Crater, Saudi Arabia, and have compared these to our previous study of the more massive, black and white melt specimens. The smaller melt samples differ from the more massive melts in that they are petrographically and chemically more homogeneous, possess fewer, more diffuse schlieren and contain much less clastic detritus. These observations suggest higher peak temperatures for the smaller melt samples than for the massive black and white melts which represent Wabar's major melt-zone.

Analyses of the Wabar and Nejed (paired with Wabar) meteorites permit detailed comparison of the unaltered projectile with impactor residues in the melts. Siderophile element concentrations indicate that the small glass beads commonly contain > 10% meteoritic component, compared to < 5% for the massive black and white melts. One glass bead was found to contain ∼ 17% meteoritic component. Based on models for melt production during cratering, we deduce that more meteoritic material was mixed with the upper stratigraphic horizons of Wabar's melt zone than with the lower parts. Siderophile elements in all Wabar melt specimens are fractionated relative to the Wabar-Nejed meteorite and have Fe/Ni ratios up to ∼ 1.8 times that of Wabar-Nejed for the most siderophile element-rich glasses. The abundance sequence of siderophiles in the melts relative to the projectile is Fe ≅ Co > Ni ≅ Ir ≅ As » Au. Although this sequence seems incompatible with simple vapor fractionation of either elements or oxides, we believe that a complex vapor fractionation process most likely produced the observed siderophile element abundances.

Our sample suite should be representative of all materials found in and around the Wabar structure, and we conclude that substantial quantities of the projectile were lost to the atmosphere, most likely as vapor. No fractionation of lithophile elements is observed in the glasses relative to the target rocks. Although fractionation of the impactor must have occurred prior to intimate mixing of projectile and target, details of the actual fractionation mechanism(s) remain poorly understood. The results of this study indicate that caution is necessary when attempting to define impactor types and masses from compositional data for impact melts from other craters.