SEARCH

SEARCH BY CITATION

REFERENCES

  • Barber D. J. (1981) Matrix phyllosilicates and associated minerals in CM2 carbonaceous chondrites. Geochim. Cosmochim, Acta. 45, 945970.
  • Brearley A. J. and Geiger T. (1991) Mineralogical and chemical studies bearing on the origin of accretionary rims in the Murchison CM2 carbonaceous chondrite Meteoritics 26, 323.
  • Browning L. (1995) The Aqueous Alteration of CM Chondritic Meteorites. Ph.D. dissertation, Univ. Tennessee, Knoxville, Tennessee, USA. 94 pp.
  • Browning L. and Bourcier W. (1998a) On the origin of rim textures surrounding carbonate grains in CM matrice (abstract). Lunar Planet. Sci. 29, Lunar and Planetary Institute, Houston, Texas, USA (cd-rom).
  • Browning L. and Bourcier W. (1998b) Constraints on the anhydrous precursor mineralogy of fine-grained materials in CM carbonaceous chondrites. Meteorit. Planet. Sci., 33, 12131220.
  • Browning L. and Keil K. (1997) Were CM chondrites aqueously altered in the quiescent interior of their parent body? (abstract) Lunar Planet. Sci. 28, Lunar and Planetary Institute, Houston, Texas, USA. (cd-rom).
  • Browning L. B., McSween, H. Y., Jr. and Zolensky M. E. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochim. Cosmochim. Acta. 60, 26212633.
  • Bunch T. E. and Chang S. (1980) Carbonaceous chondrites-II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta. 44, 15431577.
  • Clayton R. N. (1993) Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115149.
  • Eckstrand O. R. (1975) The Dumont serpentine: A model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Econ. Geol. 70, 183201.
  • Eggleton R. A. (1984) Formation of iddingsite rims on olivine: A transmission electron microscope study. Clays Clay Miner. 32, 111.
  • Eisenhour D. D. (1996) Determining chondrule size distributions from thin section measurements. Meteorit. Planet. Sci. 31, 243248.
  • Frost B. R. (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J. Petrol. 26, 3163.
  • Fuchs H. H., Olsen E. and Jensen K. J. (1973) Mineralogy, crystalchemistry, and composition of the Murchison (C2) meteorite. Smithsonian Contrib. Earth Sci. 10, 139.
  • Grossman J. N., Rubin A. E., Nagahara H. and King E. A. (1988) Properties of chondrules. In Meteorites and the Early Solar System (eds. J. F.Kerridge and M. S.Matthews), pp. 619660. Univ. Arizona Press, Tucson, Arizona, USA.
  • Groves D. I., Hudson D. R. and Hack T. B. C. (1974) Modification of iron-nickel sulfides during serpentinization and talc-carbonate alteration at Black Swan, Western Australia. Econ. Geol. 69, 12651281.
  • Hanowski N. P. (1998) The Aqueous Alteration of CM Carbonaceous Chondrites—Petrographic and Microchemical Constraints. Ph.D. thesis, Univ. New Mexico, Albuquerque, New Mexico, USA. 241 pp.
  • Hanowski N. P. and Brearley A. J. (1997) Iron-rich aureoles as recorders of in situ aqueous alteration in the CM carbonaceous chondrites Murray, Murchison, and Allan Hills 81002. In Workshop on Parent-Body and Nebular Modification of Chondritic Materials (eds. M. E.Zolensky, A. N.Krot and E. R. D.Scott), pp. 2122. LPI Technical Report 97–02, Part 1. LPI, Houston, Texas, USA.
  • Hewins R. H. and Radomsky P. M. (1990) Temperature conditions for chondrule formation. Meteoritics 25, 309318.
  • King T. V. and King E. A. (1981) Accretionary dark rims in unequilibrated chondrites. Icarus 48, 460472.
  • Li Y. (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta. 38, 703714.
  • McSween H. Y. (1987) Aqueous alteration in carbonaceous chondrites: Mass balance constraints on matrix mineralogy. Geochim. Cosmochim. Acta. 51, 24692477.
  • Metzler K., Bischoff A. and Stoffler D. (1992) Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes. Geochim. Cosmochim. Acta. 56, 28732897.
  • Moody J. B. (1976) Serpentinization: A review. Lithos 9, 125138.
  • Murphy, W. M. and Pabalan, R. T. (1994) Geochemical investigations related to the Yucca Mountain environment and potential waste repository (ed. W. C.Patrick), pp. 1149. NUREG 94–006, Nuclear Regulatory Commission, Washington, D. C., USA.
  • Noacky Y., Colin F., Nahon D., Delvigne J. and Michaux L. (1993) Secondary-mineral formation during natural weathering of pyroxene: Review and thermodynamic approach. Amer. J. Sci. 293, 111134.
  • Paces T. (1983) Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments. Geochim. Cosmochim. Acta. 47, 18551863.
  • Ramdohr P. (1967) A widespread mineral association, connected with serpentinization. N. Jb. Miner. Abh. 107, 241265.
  • Rubin A. E. and Wasson J. T. (1986) Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules. Geochim. Cosmochim. Acta. 50, 307315.
  • Rubin A. E. and Wasson J. T. (1987) Chondrules, matrix and coarse grained chondrule rims in the Allende meteorite: Origin, interrelationships and possible precursor components. Geochim. Cosmochim. Acta. 51, 19231937.
  • Sears D. W. G., Benoit P. H. and Lu J. (1993) Two chondrule groups each with distinctive rims in Murchison recognized by cathodoluminescence. Meteoritics 28, 669675.
  • Tomeoka K. and Buseck P. R. (1985) Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O, and Ni. Geochim. Cosmochim. Acta. 49, 21492163.
  • Wicks F. J. and Whittaker E. J. W. (1977) Serpentine textures and serpentinization. Can. Mineral. 15, 459488.
  • Wood J. A. (1967) Olivine and pyroxene compositions in Type II carbonaceous chondrites. Geochim. Cosmochim. Acta. 31, 20952108.
  • Zolensky M., Barrett R. and Browning L. (1993) Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta. 57, 31233148.