SEARCH

SEARCH BY CITATION

REFERENCES

  • Bauer L., Finocchi F., Duschl W. J., Gail H-P. and Schlöder J. P. (1997) Simulation of chemical reactions and dust destruction in protoplanetary accretion disks. Astron. Astrophys. 317, 273289.
  • Bell K. R. (1999) Reprocessing in luminous disks. Astrophys. J. 526, 411434.
  • Bell K. R., Cassen P., Klahr H. H. and Henning Th. (1997) The structure and appearance of protostellar accretion disks: Limits on disk flaring. Astrophys. J. 486, 372387.
  • Boss A. P. (1990) 3D solar nebula models: Implications for Earth origin. In Origin of the Earth (eds. H. E.Newsom and J. H.Jones), pp. 315. Oxford Univ. Press, New York, New York, USA.
  • Cameron A. G. W. (1978) Physics of the primitive solar nebula and of giant gaseous protoplanets. In Protostars and Planets (ed. T.Gehrels), pp. 453487. Univ. Arizona Press, Tucson, Arizona, USA.
  • Cassen P. (1993) Why convective heat transport in the solar nebula was inefficient (abstract). Lunar Planet. Sci. 24, 261262.
  • Cassen P. (1994) Utilitarian models of the primitive solar nebula. Icarus 112, 405429.
  • Cassen P. (1996) Nebula models for the fractionation of moderately volatile elements. Meteorit. Planet. Sci. 31, 793806.
  • Chambers J. E. (1998) N-body simulations of planet formation: Varying the initial number of planetary embryos. Earth, Moon Planets 81, 36.
  • Chambers J. E. and Wetherill G. W. (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304327.
  • Clayton R. N. (1993) Oxygen isotopes in meteorites. Ann. Rev. Earth Planet. Sci. 21, 11549.
  • Clayton R. N. and Mayeda T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151161.
  • Clayton R. N., Grossman L. and Mayeda T. K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485487.
  • Clayton R. N., Mayeda T. K., Goswami J. N. and Olsen E. J. (1991) Oxygen isotopic studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 23172337.
  • Cuzzi J. N., Dobrovolskis A. R. and Hogan R. C. (1996) Turbulence, chondrules, and planetesimals. In Chondrules and the Protoplanetary Disk (eds. R. H.Hewins, R. H.Jones and E. R. D.Scott), pp. 3543. Cambridge Univ. Press, Cambridge, U.K.
  • Cyr K. E., Sears W. D. and Lunine J. I. (1998) Distribution and evolution of water ice in the solar nebula: Implications for solar system body formation. Icarus 135, 537548.
  • D'Alessio P., Cantó J., Calvet N. and Lizano S. (1998) Accretion disks around young objects. I. The detailed vertical structure. Astrophys. J. 500, 411427.
  • Drouart A., Dubrulle B., Gautier D. and Robert F. (1999) Structure and transport in the solar nebula from constraints and deuterium enrichment and giant planets formation. Icarus 140, 129155.
  • Dubrulle B. (1993) Differential rotation as a source of angular momentum transfer in the solar nebula. Icarus 106, 5976.
  • Dubrulle B., Morfill G. and Sterzik M. (1993) The dust subdisk in the protoplanetary nebula. Icarus 114, 237246.
  • Duschl W. J., Gail H-P. and Tscharnuter W. M. (1996) Destruction processes for dust in protoplanetary accretion disks. Astron. Astrophys. 312, 624642.
  • Ebel D. S. and Grossman L. (2000) Condensation in dust-enriched systems. Geochim. Cosmochim. Acta 64, 339366.
  • Fegley B., Jr. and Palme H. (1985) Evidence for oxidizing conditions in the solar nebula from Mo and W depletions in refractory inclusions in carbonaceous chondrites. Earth Planet. Sci. Lett. 72, 311326.
  • Finocchi F. and Gail H-P. (1997) Chemical reactions in protoplanetary accretion disks III. The role of ionisation process. Astron. Astrophys. 327, 825844.
  • Finocchi F., Gail H-P. and Duschl W. J. (1997) Chemical reactions in protoplanetary accretion disks II. Carbon dust oxidation. Astron. Astrophys. 325, 12641279.
  • Gail H-P. (1998) Chemical reactions in protoplanetary accretion disks IV. Multicomponent dust mixture. Astron. Astrophys. 332, 10991122.
  • Grossman J.N. (1996) Chemical fractionations of chondrites: Signatures of events before chondrule formation. In Chondrules and the Protoplanetary Disk (eds. R. H.Hewins, R. H.Jones and E. R. D.Scott), pp. 243253. Cambridge Univ. Press, Cambridge, U.K.
  • Hartmann L., Calvet N., Gullbring E. and D'Alessio P. (1998) Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385400.
  • Henning Th. and Stognienko R. (1996) Dust opacities for protoplanetary accretion disks—Influence of dust aggregates. Astron. Astrophys. 311, 291303.
  • Hiyagon H. and Hashimoto A. (1999) 16O excesses in olivine inclusions Yamamoto-89009 and Murchison chondrites and their relation to CAIs. Science 283, 828831.
  • Humayan M. and Cassen P. (2000) Processes Determining the Volatile Abundances of the Meteorites and Terrestrial Planets. In Origin of the Earth and Moon (eds. K.Righter and R.Canup), pp. 323. Lunar and Planetary Institute, Houston, Texas, USA.
  • Humayan M. and Clayton R. N. (1995) Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochim. Cosmochim. Acta 59, 21312148.
  • Kenyon S. J. and Hartmann L. (1995) Pre-main sequence evolution in the Taurus-Auriga molecular cloud. Astrophys. J. 101, 117171.
  • Krot A. N., Fegley B., Jr., Palme H. and Lodders K. (2000) Meteoritical and astrophysical constraints on the oxidation state of the solar nebula. In Protostars and Planets IV (eds. V.Mannings, A. P.Boss and S. S.Russell), pp. 10191054. Univ. Arizona Press, Tucson, Arizona, USA.
  • Larimer J. W. (1988) The cosmoclassification of the elements. In Meteorites and the Early Solar System (eds. J. F.Kerridge and M. S.Matthews), pp. 375389. Univ. Arizona Press, Tucson, Arizona, USA.
  • Larimer J. W. and Anders E. (1967) Chemical fractionations in meteorites-II. Abundance patterns and their interpretations. Geochim. Cosmochim. Acta 31, 12391270.
  • Lee T., Shu F. H., Shang H., Glassgold A. E. and Rehm K. E. (1998) Protostellar cosmic rays and extinct radioactives in meteorites. Astrophys. J. 506, 898912.
  • Leshin L. A., Rubin A. E. and McKeegan K. D. (1997) The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochim. Cosmochim. Acta 61, 835845.
  • Leshin L. A., McKeegan K. D. and Benedix G. K. (2000) Oxygen isotope geochemistry of olivine from carbonaceous chondrites (abstract). Lunar Planet. Sci. 31, #1918, Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).
  • Lewis J. S. (1974) The temperature gradient in the solar nebula. Science 186, 440443.
  • Lin D. N. C. and Papaloizou J. (1985) On the dynamical origin of the solar system. In Protostars and Planets II (eds. D. C.Black and M. S.Matthews), pp. 9811072. Univ. Arizona Press, Tucson, Arizona, USA.
  • Lissauer J. J. (1987) Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69, 249265.
  • Lunine J. I., Owen T. C. and Brown R. H. (2000) The outer solar system: Chemical constraints at low temperatures on planet formation. In Protostars and Planets IV (eds. V.Manning, A. P.Boss and S. S.Russell), pp. 10551080. Univ. Arizona Press, Tucson, Arizona, USA (in press).
  • Lynden-Bell D. and Pringle J. E. (1974) The evolution of viscous discs and the origin of the nebular variables. Mon. Not. Roy. Astro. Soc. 168, 603637.
  • McKeegan K. D., Leshin L. A., Russell S. S. and MacPherson G. J. (1998) Oxygen isotopic abundances in calcium-aluminum-rich inclusions from ordinary chondrites: Implications for nebular heterogeniety. Science 280, 414418.
  • Morfill G. E. (1985) Physics and chemistry in the primitive solar nebula. In Birth and Infancy of Stars (eds. R.Lucas and A.Omont), pp. 693794. North-Holland, The Netherlands.
  • Morfill G. E. (1988) Protoplanetary accretion discs with coagulation and evaporation. Icarus 75, 371379.
  • Morfill G. E. and Wood J. A. (1989) Protoplanetary accretion disc models: The effects of several meteoritic, astronomical, and physical constraints. Icarus 82, 225243.
  • Morfill G. E., Tscharnuter W. and Völk H. J. (1985) Dynamical and chemical evolution of the protoplanetary nebula. In Protostars and Planets II (eds. D. C.Black and M. S.Matthews), pp. 493533. Univ. Arizona Press, Tucson, Arizona, USA.
  • Nakagawa Y., Sekiya M. and Hayashi C. (1986) Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67, 375390.
  • Nittler L. (1997) Presolar oxide grains in meteorites. In Astrophysical Implications of the Laboratory Study of Presolar Materials (eds. T. J.Bernatowicz and E.Zinner), pp. 5982. AIP Conf. Proc. 402, AIP Press, Woodbury, New York, USA.
  • Owen T., Mahaffy P., Niemann H. B., Atreya S., Donahue T., Bar-Nun A. and de Pater I. (1999) A low-temperature origin for the planetesimals that formed Jupiter. Nature 402, 269270.
  • Palme H., Larimer J. W. and Lipschutz M. E. (1988) Moderately volatile elements. In Meteorites and the Early Solar System (eds. J. F.Kerridge and M. S.Matthews), pp. 436461. Univ. Arizona, Tucson, Arizona, USA.
  • Petaev M. I., Meibom A., Krot A. N., Wood J. A. and Keil K. (2000) The condensation origin of zoned metal grains in QUE94411: Implications for the formation of bencubbin/ch-like chondrites (abstract). Lunar Planet. Sci. 31, #1606, Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).
  • Podosek F. and Cassen P. (1994) Theoretical, observational and isotopic estimates of the lifetime of the solar nebula. Meteoritics 29, 625.
  • Pollack J. B., Hollenbach D., Simonelli D., Beckwith S., Roush T. and Fong W. (1994) Optical properties of grains in molecular clouds and accretion disks. Astrophys. J. 421, 615639.
  • Ruden S. P. and Pollack J. B. (1991) The dynamical evolution of the protosolar nebula. Astrophys. J. 375, 740760.
  • Russell S. S., Srinivasan G., Huss G. R., Wasserburg G. J. and MacPerson G. J. (1996) Evidence for widespread 26Al in the solar nebula and constraints on nebula timescales. Science 273, 757762.
  • Scott E. R. D. and Krot A. N. (2000) Oxygen-isotopic compositions of calcium-aluminum-rich inclusions and chondrules: Evidence for dust-gas fractionation prior to nebular condensation (abstract). Meteorit. Planet. Sci. 35 (Suppl.), A144.
  • Shakura N.I. and Sunyaev R. A. (1973) Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337355.
  • Shu F. H., Shang H. and Lee T. (1996) Toward an astrophysical theory of chondrites. Science 271, 15451552.
  • Shu F. H., Shang H., Glassgold A. E. and Lee T. (1997) X-rays and fluctuating x-winds from protostars. Science 277, 14751479.
  • Stepinski T. F. and Valagaes P. (1996) Global evolution of solid matter in turbulent protoplanetary disks. I. Aerodynamics of solid particles. Astron. Astrophys. 309, 301312.
  • Stepinski T. F. and Valagaes P. (1997) Global evolution of solid matter in turbulent protoplanetary disks. II. Development of icy planetesimals. Astron. Astrophys. 319, 10071019.
  • Stevenson D. J. and Lunine J. I. (1988). Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula. Icarus 75, 146155.
  • Strom S. E., Edwards S. and Skrutskie M. F. (1993) Evolutionary timescales for circumstellar disks associated with intermediate and solar-type stars. In Protostars and Planets III (eds. E. H.Levy and J.Lunine), pp. 837881. Univ. Arizona Press, Tucson, Arizona, USA.
  • Tanaka H., Takeuchi T. and Ward W. R. (2000) Tidal interaction between a planet and a three-dimensional gaseous disk (abstract). Lunar Planet. Sci. 31, #1418, Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).
  • Thommes E. W., Duncan M. J. and Levison H. F. (1999) The formation of Uranus and Neptune in the Jupiter-Saturn region. Nature 402, 635638.
  • Walter F., Brown A., Mathieu R. D., Myers P. C. and Vrba F. J. (1988) X-ray sources in regions of star formation. III. Naked T Tauri stars associated with the Taurus-Auriga complex. Astrophys. J. 96, 297325.
  • Ward W. R. (1986) Density waves in the solar nebula: Differential Lindblad torque. Icarus 67, 164180.
  • Ward W. R. (1997) Protoplanet migration by nebula tides. Icarus 126, 261282.
  • Wasson J. T. and Chou C-L. (1974) Fractionation of moderately volatile elements in ordinary chondrites. Meteoritics 9, 6984.
  • Weidenschilling S. J. (1977) Aerodynamics of solid bodies in the solar nebula. Mon. Not. Roy. Astro. Soc. 180, 5770.
  • Weidenschilling S. J. and Cuzzi J. N. (1993) Formation of planetesimals in the solar nebula. In Protostars and Planets III (eds. E. H.Levy and J.Lunine), pp. 10311060. Univ. Arizona Press, Tucson, Arizona, USA.
  • Wetherill G. W. (1992) An alternative model for the formation of the asteroids. Icarus 100, 307325.
  • Wetherill G. W. (1996) The formation and habitability of extra-solar planets. Icarus 119, 219238.
  • Wiens R. C., Huss G. R. and Burnett D. S. (1999) The solar-oxygen isotopic composition: Predictions and implications for solar nebula processes. Meteorit. Planet. Sci. 34, 99107.
  • Wood J. A. (1967) Olivine and pyroxene compositions in Type II carbonaceous chondrites. Geochim. Cosmochim. Acta 31, 20952108.
  • Wood J. A. and Hashimoto A. (1993) Mineral equilibrium in fractionated nebular systems. Geochim. Cosmochim. Acta 57, 23772388.
  • Woolum D. S. and Cassen P. (1999) Astronomical constraints on nebular temperatures: Implications for planetesimal formation. Meteorit. Planet. Sci. 34, 897907.
  • Young E. D. and Russell S. S. (1998) Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 452455.