SEARCH

SEARCH BY CITATION

REFERENCES

  • Allen C. C., Gooding J. and Keil K. (1982) Hydrothermally altered impact melt rock and breccia: Contributions to the soil of Mars. J. Geophys. Res. 87, 10 08310 101.
  • Ames D. E., Watkinson D. H. and Parrish R. R. (1998) Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 26, 447450.
  • Anderson G. M. and MacQueen R. W. (1982) Mississippi Valley-type lead-zinc deposits. Geosci. Can. 9, 108117.
  • Bischoff L. and Oskierski W. (1988) The surface structure of the Haughton impact crater, Devon Island, Canada. Meteoritics 23, 209220.
  • Bunch T. E., Grieve R. A. F., Lee P., McKay C. P., Rice J. W., Schutt J. W. and Zent A. (1998) Haughton-Mars 97-II: Preliminary observations on highly shocked crystalline basement rocks on the Haughton Impact Crater (abstract). Lunar Planet. Sci. 29, #1307, Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).
  • Dawes P. R. and Christie R. L. (1991) Geomorphic regions. In Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland (ed. H. P.Trettin), pp. 2756. Geol. Surv. Can., Geology of Canada 3, Ottawa, Canada.
  • Deer W. A., Howie R. A. and Zussman J. (1986) Rock-Forming Minerals. Vol. 1B. Disilicates and Ring Silicates. John Wiley, New York, New York, USA. 629 pp.
  • Dence M. R. (1972) The nature and significance of terrestrial impact structures. Int. Congr. Proc, Sect. 15, 7789.
  • Farmer J. D. (2000) Hydrothermal systems: Doorways to early biosphere evolution. GSA Today 10, 19.
  • Fournier R. O. (1985) The behaviour of silica in hydrothermal solution. In Geology and Geochemistry of Epithermal Systems (eds. B. R.Berger and P. M.Berhke), pp. 4561. Review in Econ. Geol., Soc. Econ. Geol., Littleton, Colorado, USA.
  • Frisch T. (1983) Reconnaissance Geology of the Precambrian Shield of Ellesmere, Devon and Coburg Islands, Arctic Archipelago: A Preliminary Account. Geol. Surv. Can. Paper 82-10, Ottawa, Canada. 11 pp.
  • Frisch T. and Thorsteinsson R. (1978) Haughton astrobleme: A Mid-Cenozoic impact crater, Devon Island, Canadian Arctic Archipelago. Arctic 31, 108124.
  • Frisch T. and Trettin H. P. (1991) Precambrian successions in the northernmost part of the Canadian Shield. In Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland (ed. H. P.Trettin), pp. 179184. Geol. Surv. Can., Geology of Canada 3, Ottawa, Canada.
  • Giggenbach W. F. (1974) Equilibria involving polysulfide ions in aqueous sulfide solutions up to 240 °C. Inorg. Chem. 13, 17241730.
  • Goldhaber M. B. and Stanton M. R. (1987) Experimental formation of marcasite at 150–200 °C: Implications for carbonate-hosted Pb/Zn deposits (abstract). Geol. Soc. Am. Abstr. Prog. 19, 678.
  • Graup G. (1999) Carbonate-silicate liquid immiscibility upon impact melting: Ries Crater, Germany. Meteorit. Planet. Sci. 34, 425438.
  • Greiner H. R. (1963) Haughton Dome and area southwest of Thomas Lee Inlet. In Geology of the North-Central Part of the Arctic Archipelago, Northwest Territories (Operation Franklin) (eds. Y. O.Fortier et al.), pp. 208216. Geol. Surv. Can. Mem. 320, Ottawa, Canada.
  • Grieve R. A. F. and Masaitis V. L. (1994) The economic potential of terrestrial impact craters. Int. Geol. Rev. 36, 105151.
  • Grieve R. A. F. and Pilkington M. (1996) The signature of terrestrial impacts. Aust. Geol. Geophys. J. 16, 399420.
  • Hickey L. J., Johnson K. R. and Dawson M. R. (1988) The stratigraphy, sedimentology, and fossils of the Haughton Formation: A post impact crater-fill. Meteoritics 23, 221231.
  • Jessberger E. K. (1988) 40Ar-39Ar dating of the Haughton impact structure. Meteoritics 23, 233234.
  • Kring D. A. (2000) Impact events and their effect on the origin, evolution, and distribution of life. GSA Today 10, 17.
  • Lee P. (1997) A unique Mars/Early Mars analogue on Earth: The Haughton impact structure, Devon Island, Canadian Arctic. In Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and The Implications for Life (eds. S. M.Clifford et al.), p. 50. LPI Contrib. 916, Lunar and Planetary Institute, Houston, Texas, USA.
  • Lee P., Bunch T. E., Cabrol N., Cockell C. S., Grieve R. A. F., McKay C. P., Rice J. W., Schutt J. W. and Zent A. P. (1998) Haughton-Mars 97-I: Overview of observations at the Haughton impact crater, a unique Mars site in the Canadian High Arctic (abstract). Lunar Planet. Sci. 29, #1973, Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).
  • Martinez I., Agrinier P., Scharer U. and Javoy M. (1994) A SEM-ATEM and stable isotope study of carbonates from the Haughton crater. Canada. Earth Planet. Sci. Lett. 121, 559574.
  • McCarville P. and Crossey L. J. (1996) Post-impact hydrothermal alteration of the Manson impact structure. In The Manson Impact Structure, Iowa: Anatomy of An Impact Crater (eds. C.Koeberl and R. R.Anderson), pp. 347376. Geol. Soc Am. Special Paper 302, Geol. Soc. Am., Denver, Colorado, USA.
  • Metzler A., Ostertag R., Redeker H. J. and Stöffler D. (1988) Composition of the crystalline basement and shock metamorphism of crystalline and sedimentary target rocks at the Haughton impact crater. Meteoritics 23, 197207.
  • Murowchick J. B. (1992) Marcasite inversion and the petrographic determination of pyrite ancestry. Econ. Geol. 87, 11411152.
  • Murowchick J. B. and Barnes H. L. (1986) Marcasite precipitation from hydrothermal solutions. Geochim. Cosmochim. Acta 50, 26152629.
  • Naumov M. V. (1993) Zonation of hydrothermal alteration in the central uplift of the Puchezh-Katunki astrobleme (abstract). Meteoritics 28, 408409.
  • Newsom H. E. (1980) Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44, 207216.
  • Newson H. E., Graup G., Sewards T. and Keil K. (1986) Fluidization and hydrothermal alteration of the suevite deposit at the Ries Crater, West Germany, and implications for Mars. J. Geophys. Res. B13, 239251.
  • Newsom H. E., Britelle G. E., Hibbitts C. A., Crossey L. J. and Kudo A. M. (1996) Impact cratering and the formation of crater lakes on Mars. J. Geophys. Res. 101, 14 95114 955.
  • Newsom H. E., Hagerty J. J. and Goff F. (1999) Mixed hydrothermal fluids and the origin of Martian soil. J. Geophys. Res. 104, 87178728.
  • Nicholson K. (1993) Geothermal Fluids: Chemistry and Exploration Techniques. Springer-Verlag, Berlin, Germany. 263 pp.
  • Nordstrom D. K. and Jenne E. A. (1977) Fluorite solubility equilibria in selected geothermal waters. Geochim. Cosmochim. Acta 41, 175188.
  • Okulitch A. V. (1991) Geology of the Canadian Archipelago and North Greenland; Figure 2. In Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland (ed. H. P.Trettin), pp. 435458. Geol. Surv. Can., Geology of Canada 3, Ottawa, Canada.
  • Omar G., Johnson K. R., Hickey L. J., Robertson P. B., Dawson M. R. and Barnowsky C. W. (1987) Fission-track dating of Haughton astrobleme and included biota, Devon Island, Canada. Science 237, 16031605.
  • Phillips W. J. (1972) Hydraulic fracturing and mineralization. J. Geol. Soc, London 128, 337359.
  • Pohl J., Stöffler D., Gall H. and Ernston K. (1977) The Ries impact crater. In Impact and Explosion Cratering (eds. D. J.Roddy and R. O.Pepin), pp. 343404. Pergamon Press, New York, New York, USA.
  • Pohl J., Eckstaller A. and Robertson P. B. (1988) Gravity and magnetic investigations in the Haughton impact structure, Devon Island, Canada. Meteoritics 23, 235238.
  • Redeker H. J. and Stöffler D. (1988) The allochthonous polymict breccia layer of the Haughton impact crater, Devon Island, Canada. Meteoritics 23, 85196.
  • Rimstidt J. D. (1997) Gangue mineral transport and deposition. In Geochemistry of Hydrothermal Ore Deposits (ed. H. L.Barnes), pp. 487515. John Wiley and Sons, New York, New York, USA.
  • Robertson P. B. and Mason G. D. (1975) Shatter cones from the Haughton Dome, Devon Island, Canada. Nature 255, 393394.
  • Robertson P. B. and Sweeney J. F. (1983) Haughton impact structure: Structural and morphological aspects. Can. J. Earth Sci. 20, 11341151.
  • Schoonen M. A. A. and Barnes H. L. (1991a) Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100 °C. Geochim. Cosmochim. Acta 55, 14951504.
  • Schoonen M. A. A. and Barnes H. L. (1991b) Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C. Geochim. Cosmochim. Acta 55, 15051514.
  • Schoonen M. A. A. and Barnes H. L. (1991c) Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes. Geochim. Cosmochim. Acta 55, 34913504.
  • Scott D. and Hajnal Z. (1988) Seismic signature of the Haughton structure. Meteoritics 23, 239247.
  • Spirakis C. S. (1986) The valence of sulfur in disulfides—An overlooked clue to the genesis of Mississippi Valley-type lead-zinc deposits. Econ. Geol. 81, 15441545.
  • Sturkell E. F. F., Broman C., Forsberg P. and Torssander P.(1998) Impact-related hydrothermal activity in the Lockne impact structure, Jämtland, Sweden. Eur. J. Mineral. 10, 589606.
  • Sverjensky A. (1986) Genesis of Mississippi Valley-type lead-zinc deposits. Ann. Rev. Earth Planet. Sci. 14, 177199.
  • Thorsteinsson R. and Mayr U. (1987a) Geology of Bear West and Baillie-Hamilton Island, District of Franklin, Northwest Territories. Geol. Surv. Can., Map 1614A, 1:250 000, Ottawa, Canada.
  • Thorsteinsson R. and Mayr U. (1987b) The Sedimentary Rocks of Devon Island, Canadian Arctic Archipelago. Geol. Surv. Can. Mem. 411, Ottawa, Canada. 182 pp.
  • Wagner G. A. (1977) Spaltspurendatierungen an Mineralien aus kristallinen Riesgesteinen. Geol. Bavarica 75, 349354.