SEARCH

SEARCH BY CITATION

REFERENCES

  • Akai J. (1988) Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites. Geochim. Cosmochim. Acta. 52, 15931599.
  • Akai J. (1990a) Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162. Proc. NIPR Symp. Antarct. Meteorites 3, 5568.
  • Akai J. (1990b) Thermal metamorphism in four Antarctic carbonaceous chondrites and its temperature scale estimated by T-T-T diagram (abstract). Proc. Nipr Symp. Antarct. Meteorites 4, 8687.
  • Bell M. S. (1997) Experimental shock effects in calcite, gypsum, and quartz (abstract). Meteorit. Planet. Sci. 32 (Suppl.), A17.
  • Brearley A. J. (1990) Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins and thermal history. Geochim. Cosmochim. Acta. 54, 831850.
  • Brearley A. J. (1997) Phyllosilicates in the matrix of the unique carbonaceous chondrite, LEW 85332 and possible implications for aqueous alteration of CI chondrites. Meteorit. Planet. Sci. 32, 377388.
  • Brown P. et al (2000) The fall, recovery, orbit, and composition of the Tagish Lake meteorite: A new type of carbonaceous chondrite. Science 290, 320325.
  • Browning L., McSween H. Y. and Zolensky M. E. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochim. Cosmochim. Acta. 60, 26212633.
  • Carr M. H. (1970) Atmospheric collection of debris from the Revelstoke and Allende fireballs. Geochim. Cosmochim. Acta. 34, 689700.
  • Clayton R. N. and Mayeda T. (2001) Oxygen isotopic composition of the Tagish Lake carbonaceous chondrite (abstract). Lunar Planet. Sci. 32, #1885, The Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).
  • Consolmagno G. J. and Britt D. T. (1998) The density and porosity of meteorites from the Vatican collection. Meteorit. Planet. Sci. 33, 12311241.
  • Corrigan C. C., Zolensky M. E., Dahl J., Long M., Weir J. and Sapp C. (1997) The porosity and permeability of chondritic meteorites and interplanetary dust particles. Meteorit. Planet. Sci. 32, 509515.
  • Engrand C., Gounelle M., Duprat J. and Zolensky M. E. (2001) In-situ oxygen isotopic composition of individual minerals in Tagish Lake, A unique type 2 carbonaceous meteorite (abstract). Lunar Planet. Sci. 32, #1568, The Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).
  • Fischbach D. B. (1971) The kinetics and mechanism of graphitization. In Physics and Chemistry of Carbon, Vol. 7 (ed. P. L.Walker), pp. 1105. Dekker, New York, New York, USA.
  • Friedrich J. M., Wang M-S. and Lipschutz M. E. (2002) Comparison of the trace element composition of Tagish Lake with other primitive carbonaceous chondrites. Meteorit. Planet. Sci. 37, 677686.
  • Goldstein J. I. (1979) Principles of thin-film x-ray microanalysis. In Introduction to Analytical Electron Microscopy (eds. J. J.Hren et al), pp. 813820. Plenum, New York, New York, USA.
  • Gooding J. L. (1983) Survey of chondrule average properties in H-, L- and LL-group chondrites: Are chondrules the same in all unequilibrated ordinary chondrites? In Chondrules and Their Origins (ed. E. A.King), pp. 6187. Lunar and Planetary Institute, Houston, Texas, USA.
  • Gounelle M. and Zolensky M. (2001) A terrestrial origin for sulfate veins in CI chondrites. Meteorit. Planet. Sci. 36, 13211329.
  • Greenwood R. C., Lee M. R., Hutchison R. and Barber D. J. (1994) Formation and alteration of CAIs in Cold Bokkeveld (CM2). Geochim. Cosmochim. Acta. 58, 19131935.
  • HewinsR. H., JonesR. H. and ScottE. R. D., Eds. (1996) Chondrules and the Protoplanetary Disk. Cambridge Univ. Press, Cambridge, U.K. 346 pp.
  • Hiroi T., Zolensky M. E. and Pieters C. (2001) Discovery of a sample of the D-Class asteroids: The Tagish Lake meteorite. Science 293, 22342236.
  • Ivanov A. V., Zolensky M. E., Saito A., Ohsumi K., MacPherson G. J., Yang S. V., Kononkova N. N. and Mikouchi T. (2000) Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite. Am. Mineral. 85, 10821086.
  • Krot A. N., Scott E. R. D. and Zolensky M. E. (1997) Origin of fayalitic olivine rims and lath-shaped matrix olivines in the CV3 chondrite Allende and its dark inclusions. Meteorit. Planet. Sci. 32, 3149.
  • Lee M. R. and Greenwood R. C. (1994) Alteration of calcium- and aluminum-ruch inclusions in the Murray (CM2) carbonaceous chondrite. Meteoritics 29, 780790.
  • MacPherson G. J. and Davis A. M. (1994) Refractory inclusions in the prototypical CM chondrite, Mighei. Geochim. Cosmochim. Acta. 58, 55995625.
  • McSween H. Y. (1977) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim. Cosmochim. Acta. 41, 17771790.
  • Metzler K., Bischoff A. and Stöffler D. (1992) Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes. Geochim. Cosmochim. Acta. 56, 28732897.
  • Mikouchi T., Kasama T., Tachikawa O. and Zolensky M. E. (2001) Transmission electron microscopy of the matrix minerals in the Tagish Lake carbonaceous chondrite (abstract). Lunar Planet. Sci. 32, #1371, The Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).
  • Mittlefehldt D. W. (2002) Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake, the anomalous CM chondrite Bells, and comparison with CI and CM chondrites. Meteorit. Planet. Sci. 37, 703712.
  • Nahon D. B. (1991) Introduction to the Petrology of Soils and Chemical Weathering. Wiley, New York, New York, USA. 313 pp.
  • Nakamura K., Zolensky M. E., Tomita S. and Tomeoka K. (2001) In-situ observations of carbonaceous globules in the Tagish Lake meteorite (abstract). Meteorit. Planet. Sci. 36 (Suppl.), A145A146.
  • Northrop S. A. (1959) Minerals of New Mexico. Univ. New Mexico Press, Albuquerque, New Mexico, USA. 665 pp.
  • Rietmeijer F. J. M. and Mackinnon I. D. R. (1985) Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials. Nature 316, 733736.
  • Scott E. R. D., Keil K. and Stöffler D. (1992) Shock metamorphism of carbonaceous chondrites. Geochim. Cosmochim. Acta. 56, 42814293.
  • Shu F. H., Shang S., Gounelle M., Glassgold A. E. and Lee T. (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J. 548, 10291050.
  • Simon S. B. and Grossman L. (2001a) Petrography and mineral chemistry of the chondrule, inclusion and olivine populations in the Tagish Lake carbonaceous chondrite (abstract). Lunar Planet. Set. 32, #1240, The Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).
  • Simon S. B. and Grossman L. (2001b) The isolated olivine grain population and accretionary rims observed in Tagish Lake (abstract). Meteorit. Planet. Sci. 36 (Suppl.), A189A190.
  • Sorby H. C. (1877) On the structure and origin of meteorites. Nature 15, 495498.
  • Tagliaferri E., Spalding R., Jacobs C., Worden S. P. and Erlich A. (1994) Detection of meteoroid impacts by optical sensors in earth orbit. In Hazards Due to Comets and Asteroids (ed. T.Gehrels), pp. 199220. Univ. Arizona Press, Tucson, Arizona, USA.
  • Wasson J. T. (1974) Meteorites, Classification and Properties. Springer-Verlag, New York, New York, USA. 316 pp.
  • Weisberg M. K., Prince M., Clayton R. N. and Mayeda T. K. (1993) The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochim. Cosmochim. Acta. 57, 15671586.
  • Zinner E., Amari S., Wopenka B. and Lewis R. (1995) Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains from Murchison. Meteoritics 30, 209226.
  • Zolensky M. E. and Di Valentin T. (1998) Iron-nickel sulfides as environmental indicators for chondritic materials (abstract). Proc. Niprsymp. Antarct. Meteorites 12, 183185.
  • Zolensky M. E., Bourcier W. L. and Gooding J. L. (1989) Aqueous alteration on the hydrated asteroids: Results of EQ3/6 computer simulations. Icarus 78, 411425.
  • Zolensky M. E., Barrett R. A. and Ivanov A. V. (1991) Mineralogy and matrix composition of CI clasts in the chondritic breccia Kaidun (abstract). Lunar Planet. Sci. 22, 15651566.
  • Zolensky M. E., Barrett R. A. and Browning L. (1993) Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta. 51, 31233148.
  • Zolensky M. E., Ivanov A. V., Yang V. and Ohsumi K. (1996a) The Kaidun meteorite: Mineralogy of an unusual CM1 clast. Meteorit. Planet. Sci. 31, 484493.
  • Zolensky M. E., Weisberg M. K., Buchanan P. C. and Mittlefehldt D. W. (1996b) Mineralogy of carbonaceous chondrite clasts in howardites, eucrites and the Moon. Meteorit. Planet. Sci. 31, 518537.
  • Zolensky M. E., Mittlefehldt D. W., Lipschutz M. E., Wang M-S., Clayton R. N., Mayeda T., Grady M. M., Pillinger C. and Barber D. (1997) CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochim. Cosmochim. Acta. 61, 50995115.