• Benedix G. K., McCoy T. J., Keil K., Bogard D. D., and Garrison D. H. 1998. A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochimica et Cosmochimica Acta 62: 25352553.
  • Clarke R. S. Jr., Appleman D. E., Ross D. R. 1981. An Antarctic iron meteorite contains preterrestrial impact-produced diamond and lonsdaleite. Nature 291: 396398.
  • Keil K. 1968. Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research 73: 69456976.
  • Rocchette P., Sagnotti L., Bourot-Denise M., Consolmagno G., Folco L., Gattacceca J., Osete M. L., and Pesonen L. 2003. Magnetic classification of stony meteorites: 1. Ordinary chondrites. Meteoritics & Planetary Science 38(2): 251268.
  • Spurny P., Oberst J., and Heinlein D. 2003. Photographic observation of Neuschwanstein, a second meteorite from the orbit of the Pribram chondrite. Nature 423: 151155.
  • Stöffler D., Keil K., and Scott E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55: 38453867.
  • Wasson J. T. and Kallemeyn G. W. 2002. The IAB iron-meteorite complex: A group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochimica et Cosmochimica Acta 66: 24452473.
  • Wlotzka F. 1993. A weathering scale for the ordinary chondrites (abstract). Meteoritics 28: 460.
  • Zhang Y., Benoit P. H., Sears D. W. G. 1995. The classification and complex thermal history of the enstatite chondrites. Journal of Geophysical Research 100: 94179438.
  • M. Zbik and A. Pring Forthcoming. The Myrtle Springs meteorite: An H4 chondrite from South Australia. Transactions of the Royal Society of South Australia.