SEARCH

SEARCH BY CITATION

REFERENCES

  • Akai J. 1988. Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites. Geochimica et Cosmochimica Acta 52: 15931599.
  • Alexander C. M. O'D., Russell S. S., Arden J. W., Ash R. D., Grady M. M., and Pillinger C. T. 1998. The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study. Meteoritics & Planetary Science 33: 603622.
  • Ash R. D. and Pillinger C. T. 1993. Carbon in weathered ordinary chondrites from Roosevelt county. Proceedings, 24th Lunar and Planetary Science Conference. pp. 4344.
  • Ash R. D. and Pillinger C. T. 1995. Carbon, nitrogen, and hydrogen in Saharan chondrites: The importance of weathering. Meteoritics 30: 8592.
  • Baker L., Franchi I. A., Maynard J. M., Wright I. P., and Pillinger C. T. 1998. Measurement of Oxygen isotopes in water from CI and CM chondrites (abstract #1740). 29th Lunar and Planetary Science Conference. CD-ROM.
  • Baker L., Franchi I. A., Wright I. P., and Pillinger C. T. 2002. The oxygen isotopic composition of water from Tagish Lake: Its relationship to low-temperature phases and to other carbonaceous chondrites. Meteoritics & Planetary Science 37: 977985.
  • Bland P. A., Franchi. A., Sexton A. S., Berry F. J., and Pillinger C. T. 1996. The O isotopic composition of weathered ordinary chondrites from the Nullarbor region (abstract). Meteoritics & Planetary Science 31: A16.
  • Bland P. A., Lee M. R., Sexton A. S., Franchi I. A., Fallick A. E. T., Miller M. F., Cadogan J. M., Berry F. J., and Pillinger C. T. 2000. Aqueous alteration without a pronounced oxygen-isotopic shift: Implications for the asteroidal processing of chondritic materials. Meteoritics & Planetary Science 35: 13871395.
  • Brearley A. J. 1993 Matrix and fine-grained rims in the equilibrated CO3 chondrite ALH A77307: Origins and evidence for diverse, primitive nebular dust components. Geochimica et Cosmochimica Acta 57: 15211550.
  • Brett R. and Sato M. 1984. Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies. Geochimica et Cosmochimica Acta 48: 111120.
  • Cassen P. 2001. Nebular thermal evolution and the properties of primitive planetary materials. Meteoritics & Planetary Science 36: 671700.
  • Chakraborty S. 1997. Rates and mechanisms of Fe-Mg interdiffusion in olivine at 900 °C-1300 °C. Journal of Geophysical Research 102: 1231712331.
  • Chizmadia L. J., Rubin A. E., and Wasson J. T. 2002. Mineralogy and petrology of olivine inclusions in CO3 chondrites: Relationship to parent-body aqueous alteration. Meteoriics & Planetary Science 37: 17811796.
  • Michel-Levy Christophe M. 1969. Etude minéralogique de la chondrite CIII de Lancé. In Meteorite research, edited by Millman P. Dordrecht: D. Reidel. pp. 492499.
  • Clayton R. N. 1993. Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences 21: 115149.
  • Clayton R. N. and Mayeda T. K. 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters 67: 151161.
  • Clayton R. N. and Mayeda T. K. 1990. Oxygen isotopic composition of Antarctic meteorites (abstract). In Workshop on differences between Antarctic and non-Antarctic meteorites, edited by Koeberl C. and Cassidy W. A. Technical Report 90–01. Houston: Lunar and Planetary Institute.
  • Clayton R. N. and Mayeda T. K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta 63: 20892104.
  • Clayton R. N., Mayeda T. K., and Yanai K. 1984. Oxygen isotopic compositions of some Yamato meteorites. Proceedings of the 9th Symposium on Antarctic Meteorites 35: 267271.
  • Deer W. A., Howie R. A., and Zussman J. 1997. Rock-forming minerals, vol. 1A, Orthosilicates. London: Longman Scientific & Technical.
  • Faure G. 1986. Principles of isotope geology, 2nd ed. New York: John Wiley & Sons, Inc..
  • Franchi I. A., Bland P., Berry F. J., Speck A., and Pillinger C. T. 1994. The influence of weathering on the measured oxygen isotopic composition of ordinary chondrites (abstract). Meteoritics 29: 467468.
  • Franchi I. A., Baker L., Bridges J. C., Wright I. P., and Pillinger C. T. 2001. Oxygen isotopes in the early solar system. Philosophical Transactions of the Royal Society of London A 359: 20192035.
  • Gibson E. K. and Bogard D. D. 1978. Chemical alterations of the Holbrook chondrite resulting from terrestrial weathering. Meteoritics 13: 277289.
  • Gooding J. L., Jull A. J. T., Cheng S., and Velbel M. A. 1988. Mg-carbonate weathering products in Antarctic meteorites: Isotopic composition and origin of nesquehonite from LEW 85320. Proceedings, 19th Lunar and Planetary Science Conference. pp. 397398.
  • Grady M. M., Gibson E. K., Wright I. P., and Pillinger C.T. 1988. Alteration products on the LEW 85320 H5 chondrite. Proceedings, 19th Lunar and Planetary Science Conference. pp. 409411.
  • Grady M. M., Wright I. P., and Pillinger C. T. 1991. Comparisons between Antarctic and non-Antarctic meteorites based on carbon isotope geochemistry. Geochimica et Cosmochimica Acta 55: 4958.
  • Grossman J. N., Birch B., Benoit P. H., Sears D. W. G., Clayton R. N., Rubin A. E., and Chizmadia L. J. 2000. Rainbow: A new CO3 chondrite from Australia (abstract #1355). 31st Lunar and Planetary Science Conference. CD-ROM.
  • Haack H., Taylor G. J., Scott E. R. D., and Keil K. 1992. Thermal history of chondrites: Hot accretion versus metamorphic reheating. Geophysical Research Letters 19: 22352238.
  • Huss G. R., Meshik A. P., Hohenberg C. M., and Smith J. B. 2002. Relationships among chondrite groups inferred from presolar-grain abundances (abstract #1910). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Itoh D. and Tomeoka K. 2001. Phyllosilicate-bearing chondrules and clasts in the ALH A77307 CO3 chondrite: Evidence for parent body processes (abstract). Proceedings of the NIPR Symposium on Antarctic Meteorites 14: 4749.
  • Itoh D. and Tomeoka K. 2003. Dark inclusions in CO3 chondrites: New indicators of parent-body processes. Geochimica et Cosmochimica Acta 67: 153169.
  • Jones R. H. 1993. Effect of metamorphism on isolated olivine grains in CO3 chondrites. Geochimica et Cosmochimica Acta 57: 28532867.
  • Jones R. H. 1997. Alteration of plagioclase-rich chondrules in CO3 chondrites: Evidence for late-stage sodium and iron metasomatism in a nebular environment (abstract). In Workshop on parent body and nebular modification of chondritic materials, edited by Zolensky M. E., Krot A. N., and Scott E. R. D. LPI Technical Report 97–02. Houston: Lunar and Planetary Insitute. pp. 3031.
  • Jones R. H. and Rubie D. C. 1990. Thermal metamorphism in CO3 chondrites: Application of olivine diffusion modeling to post-accretionary metamorphism (abstract). Proceedings, 21st Lunar and Planetary Science Conference. pp. 583584.
  • Jull A. J. T., Cheng S., Gooding J. L., and Velbel M. A. 1988. Rapid growth of magnesium-carbonate weathering products in a stony meteorite from Antarctica. Science 242: 417419.
  • Jull A. J. T., Donahue D. J., Cielaszyk E., and Wlotzka F. 1993. Carbon-14 terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA). Meteoritics 28: 188195.
  • Jull A. J. T., Eastoe C. J., Xue S., and Herzog G. F. 1995. Isotopic composition of carbonates in the SNC meteorites Allan Hills 84001 and Nakhla. Meteoritics 30: 311318.
  • Jurewicz A. J. G. and Watson E. B. 1988. Cations in olivine, part 2: Diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contributions to Mineralogy and Petrology 99: 186201.
  • Keck B. D. and Sears D. W. G. 1987. Chemical and physical studies of type 3 chondrites, VIII: The CO chondrites. Geochimica et Cosmochimica Acta 51: 30133022.
  • Keller L. P. and Buseck P. R. 1990. Matrix mineralogy of the Lancé CO3 carbonaceous chondrite: A transmission electron microscope study. Geochimica et Cosmochimica Acta 54: 11551163.
  • Kerridge J. F. 1964. Low-temperature minerals from fine-grained matrix of some carbonaceous meteorites. Annuls of the New York Academy of Science 119: 4153.
  • Kerridge J. F. 1985. Carbon, hydrogen, and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochimica et Cosmochimica Acta 49: 17071714.
  • Kerridge J. F., Chang S., and Shipp R. 1987. Isotopic characterization of kerogen-like material in the Murchison carbonaceous chondrite. Geochimica et Cosmochimica Acta 51: 25272540.
  • Kurat G. 1973. The Lancé chondrite: Further evidence for the complex development of chondrites. Meteoritics 8: 5152.
  • Kurat G. 1975. Der köhlige chondrit Lancé: Eine petrologische Analtse der komplexen Genese eines Chondriten. Tschermaks Mineralogische und Petrographische Mitteilungen 22: 3878.
  • Lee M. R. and Bland P. A. 1999. SEM and TEM characterisation of terrestrial weathering products in equilibrated ordinary chondrite finds from hot and cold deserts (abstract). Meteoritecs 34: A73.
  • Mayeda T. K. and Clayton R. N. 1998 Oxygen isotope effects in serpentine dehydration (abstract #1405). 29th Lunar and Planetary Science Conference. CD-ROM.
  • McSween H. Y. 1977 Carbonaceous chondrites of the Ornans type: A metamorphic sequence. Geochimica et Cosmochimica Acta 41: 477491.
  • Methot R. L., Noonan A. F., Jaroseewich E., Degasparis A. A., and Al-Far D. M. 1975. Mineralogy, petrology, and chemistry of the Isna (C3) meteorite. Mineralogy 10: 121131.
  • Miller M. F. 2002 Isotopic fractionation and the quantification of 17O amomalies in the oxygen three-isotope system: An appraisal and geochemical sugnificance. Geochimica et Cosmochimica Acta 66: 18811889.
  • Miller M. F., Franchi I. A., Sexton A. S., and Pillinger C. T. 1999. High precision δ17O measurements of oxygen from silicates and other oxides: Method and applications. Rapid Communications in Mass Spectrometry 13: 12111217.
  • Newton J. 1994. A carbon and nitrogen isotope study of CO3 chondrites. Ph.D. thesis, Open University, Milton Keynes, U.K.
  • Newton J., Arden J. W., and Pillinger C. T. 1992a. Carbon and nitrogen isotope studies of a suite of type CO3 carbonaceous chondrites (abstract). Proceedings, 23rd Lunar and Planetary Science Conference. pp. 985986.
  • Newton J., Arden J. W., and Pillinger C. T. 1992b. Metamorphism of CO3 chondrites: A carbon and nitrogen isotope study (abstract). Meteoritics 27: 267268.
  • Rubin A. E. 1998. Correlated petrologic and geochemical characteristics of CO3 chondrites. Meteoritics & Planetary Science 33: 385391.
  • Rubin A. E. and Brearley A. J. 1996. A critical evaluation of the evidence for hot accretion. Icarus 124: 8696.
  • Rubin A. E., James J. A., Keck B. D., Weeks K. S., Sears D. W. G., and Jarosewich E. 1985. The Colony meteorite and variations in CO3 chondrite properties. Meteoritics 20: 175195.
  • Russell S. S., Huss G. R., Fahey A. J., Greenwood R. C., Hutchison R., and Wasserburg G. J. 1998. An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3 meteorites. Geochimica et Cosmochimica Acta 62: 689714.
  • Scott E. R. D. and Jones R. H. 1990. Disentangling nebular and asteroidal features of CO3 carbonaceous chondrite meteorites. Geochimica et Cosmochimica Acta 54: 24852502.
  • Scott E. R. D., Krot A. N., and Browning L. B. 1997. Asteroidal modifications of C and O chondrites: Myths and models (abstract). In Workshop on parent body and nebular modification of chondritic materials, edited by Zolensky M. E., Krot A. N., and Scott E. R. D. LPI Technical Report 97–02. Houston: Lunar and Planetary Institute. pp. 5657.
  • Sears D. W., Grossman J. N., Melcher C. L., Ross L. M., and Mills A. A. 1980. Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287: 791795.
  • Sears D. W. G., Batchelor J. D., Lu J., and Keck B. D. 1991. Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites 4: 319343.
  • Sephton M. A. 2002. Organic compounds in carbonaceous meteorites. Natural Product Reports 19: 292311.
  • Sephton M. A., Verchovsky A. B., Bland P. A., Gilmour I., Grady M. M., and Wright I. P. 2003. Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites. Geochimica et Cosmochimica Acta 67: 20932108.
  • Stelzner T., Heide K., Bischoff A., Weber D., Scherer P., Schultz L., Happel M., Schrön W., Neupert U., Michel R., Clayton R. N., Mayeda T. K., Bonani G., Haidas I., Ivy-Ochs S., and Suter M. 1999. An interdisciplinary study of weathering effect in ordinary chondrites from the ACFER region, Algeria. Meteoritics & Planetary Science 34: 787794.
  • Tomeoka K., Nomura K., and Takeda H. 1992. Na-bearing Ca-Al-rich inclusions in the Yamato-791717 CO carbonaceous chondrite. Meteoritics 27: 136143.
  • Wasson J. T., Yurimoto H., and Russell S. S. 2001. 16O-rich melilite in CO3.0 chondrites: Possible formation of common, 16O-poor melilite by aqueous alteration. Geochimica et Cosmochimica Acta 65: 45394549.
  • Wood J. A. 1967. Chondrites: Their metallic minerals, thermal histories, and parent planets. Icarus 6: 149.
  • Willis J. and Goldstein J. I. 1981. The revision of metallographic cooling rate curves for chondrites (abstract). Proceedings, 12th Lunar and Planetary Science Conference. pp. 11881190.
  • Young E. D., Ash R. D., England P., and Rumble D. 1999. Fluid flow in chondritic parent bodies: Deciphering the compositions of planetesimals. Science 286: 13311335.