SEARCH

SEARCH BY CITATION

REFERENCES

  • Afiattalab F. and Wasson J. T. 1980. Composition of the metal phases in ordinary chondrites: Implications regarding classification and metamorphism. Geochimica et Cosmochimica Acta 44:431446.
  • Andersen D. J., Lindsley D. H., and Davidson P. M. 1993. QUILF—A Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Computers and Geosciences 19:13331350.
  • Ballhaus C., Berry R. F., and Green D. H. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology 107:2740.
  • Bennett M. E. and McSween H. Y. 1996. Revised model calculations for the thermal histories of ordinary chondrite parent bodies. Meteoritics & Planetary Science 31:783792.
  • Berman R. G. 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology 29:445522.
  • Binns R. A. 1967. Farmington meteorite: Cristobalite xenoliths and blackening. Science 156:12221226.
  • Bischoff A. and Keil K. 1983. Ca-Al-rich chondrules and inclusions in ordinary chondrites. Nature 303:588592.
  • Bischoff A., Palme H., and Spettel B. 1989. Al-rich chondrules from the Ybbsitz-H4 chondrite: Evidence for formation by collision and splashing. Earth and Planetary Science Letters 93:170180.
  • Brändstatter F. and Kurat G. 1985. On the occurrence of silica in ordinary chondrites (abstract). Meteoritics 20:615616.
  • Brearley A. J. and Jones R. H. 1998. Chondritic meteorites. In Planetary materials, edited by PapikeJ. J. Washington D. C.: Mineralogical Society of America. pp. 3-13–398.
  • Brett R. and Sato M. 1984. Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies. Geochimica et Cosmochimica Acta 48:111120.
  • Bunch T. E., Keil K., and Snetsinger K. G. 1967. Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochimica et Cosmochimica Acta 31:15691582.
  • Buseck P. R. and Keil K. 1966. Meteoritic rutile. American Mineralogist 51:15061515.
  • Chamberlin L., Beckett J. R., and Stolper E. 1994. Pd-oxide equilibration: A new experimental method for the direct determination of oxide activities in melts and minerals. Contributions to Mineralogy and Petrology 116:169181.
  • Chuang Y. -Y., Hsieh K. -C., and Chang Y. A. 1985. Thermodynamics and phase relationships of transition metal-sulfur systems. Part V. A reevaluation of the Fe-S system using associated solution model for the liquid phase. Metallurgical Transactions 16B:277285.
  • Dinsdale A. T. 1991. SGTE data for pure elements. Calphad 15:317425.
  • Dodd R. T. 1969. Metamorphism of the ordinary chondrites: A review. Geochimica et Cosmochimica Acta 33:161203.
  • Dodd R. T. 1981. Meteorites, a petrologic-chemical synthesis. New York: Cambridge University Press. 368 p.
  • Engi M. 1983. Equilibria involving Al-Cr spinel: Mg-Fe exchange with olivine. Experiments, thermodynamic analysis, and consequences for geothermometry. American Journal of Science 283A:2971.
  • Fabriès J. 1979. Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contributions to Mineralogy and Petrology 69:329336.
  • Fernández-Guillermet A. 1989. Assessing the thermodynamics of the Fe-Co-Ni system using a CALPHAD predictive technique. Calphad 13:122.
  • Fodor R. V., Sial A. N., and Gandhok G. 2002. Petrology of spinel peridotite xenoliths from northeastern Brazil: Lithosphere with a high geothermal gradient imparted by Fernando de Noronha plume. Journal of South American Earth Sciences 15:199214.
  • Fredriksson K., Nelen J., and Fredriksson B. J. 1968. The LL-group chondrites. In Origin and distribution of the elements, edited by AhrensL. H. New York: Pergamon Press. pp. 457466.
  • Ganguly J. and Tazzoli V. 1994. Fe2+-Mg interdiffusion in orthopyroxene: Retrieval from the data on intracrystalline exchange reaction. American Mineralogist 79:930937.
  • Ganguly J., Yang H., and Ghose S. 1994. Thermal history of mesosiderites: Quantitative constraints from compositional zoning and Fe-Mg ordering in orthopyroxenes. Geochimica et Cosmochimica Acta 58:27112723.
  • Gastineau-Lyons H. K., McSween H. Y., and Gaffey M. J. 2002. A critical evaluation of oxidation versus reduction during metamorphism of L and LL group chondrites, and implications for asteroid spectroscopy. Meteoritics & Planetary Science 37:7589.
  • Ghiorso M. S. and Sack R. O. 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119:197212.
  • Grady M. M. 2000. Catalogue of meteorites: With special reference to those represented in the collection of the Natural History Museum, London, 5th edition. London: Cambridge University Press. 689 p.
  • Gudmundsson G. and Holloway J. R. 1993. Activity-composition relationships in the system Fe-Pt at 1300 and 1400 °C and at 1 atm and 20 kbar. American Mineralogist 78:178186.
  • Hashizume K. and Sugiura N. 1997. Isotopically anomalous nitrogen in H-chondrite metal. Geochimica et Cosmochimica Acta 61:859872.
  • Harvey R. P., Bennett M. L., and McSween H. Y. 1993. Pyroxene equilibration temperatures in metamorphosed ordinary chondrites (abstract). 24th Lunar and Planetary Science Conference. pp. 615616.
  • Holland T. J. B. and Powell R. 1990. An enlarged and updated internally consistent thermodynamic data set with uncertainties and correlations: The system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology 8:89124.
  • Hsieh K. C., Vlach K. -C., and Chang Y. A. 1987. The Fe-Ni-S system I. A thermodynamic analysis of the phase equilibria and calculation of the phase diagram from 1173 to 1623 K. High Temperature Science 23:1738.
  • Ikeda Y., Yamamoto T., Kojima H., Imae N., Kong P., Ebihara M., and Prinz M. 1997. Yamato-791093, a metal-sulfide-enriched H-group chondritic meteorite transitional to primitive IIE irons with silicate inclusions. Antarctic Meteorite Research 10:335353.
  • Irvine T. N. 1965. Chromian spinel as a petrogenetic indicator. Part I. Theory. Canadian Journal of Earth Sciences 2:648672.
  • Jackson E. D. 1969. Chemical variation in coexisting chromite and olivine in chromitite zones of the Stillwater complex. Economic Geology Monograph 4:4171.
  • Jacob K. T. and Iyengar G. N. K. 1999. Thermodynamics and phase equilibria involving the spinel solid solution FexMg1–xCr2O4. Metallurgical and Materials Transactions 30B:865871.
  • Jarosewich E. 1990. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25:323337.
  • Johnson C. A. and Prinz M. 1991. Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites: Implications for thermal histories and group differences. Geochimica et Cosmochimica Acta 55:893904.
  • Jönsson B. 1995. Assessment of the mobilities of Cr, Fe, and Ni in fcc Cr-Fe-Ni alloys. Zeitschrift für Metallkunde 86:686692.
  • Keil K. and Fodor R. V. 1980. Origin and history of the polymictbrecciated Tysnes Island chondrite and its carbonaceous and non-carbonaceous lithic fragments. Chemie der Erde 39:126.
  • Keil K. and Fredriksson K. 1964. The iron, magnesium, and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites. Journal of Geophysical Research 69:34873515.
  • Kessel R., Beckett J. R., and Stolper E. M. 2001. Thermodynamic properties of the Pt-Fe system. American Mineralogist 86:10031014.
  • Kessel R., Beckett J. R., and Stolper E. M. 2002. The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature. (abstract #1420). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Kessel R., Beckett J. R., and Stolper E. M. 2003. Experimental determination of the activity of chromite in multicomponent spinels. Geochimica et Cosmochimica Acta 67:30333044.
  • Kessel R., Beckett J. R., and Stolper E. M. Forthcoming. The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature. Geochimica et Cosmochimica Acta.
  • Kleinschrot D. and Okrusch M. 1999. Mineralogy, petrography, and thermometry of the H5 chondrite Carcote, Chile. Meteoritics & Planetary Science 34:795802.
  • Klemme S., O'Neill H. St. C., Schnelle W., and Gmelin E. 2000. The heat capacity of MgCr2O4, FeCr2O4, and Cr2O3 at low temperatures and derived thermodynamic properties. American Mineralogist 85:16861693.
  • Larimer J. W. 1968. Experimental studies on the system Fe-MgO-SiO2-O2 and their bearing on the petrology of chondritic meteorites. Geochimica et Cosmochimica Acta 32:11871207.
  • Lauretta D. S., Buseck P. R., and Zega T. J. 2001. Opaque minerals in the matrix of the Bishunpur (LL3.1) chondrite: Constraints on the chondrule formation environment. Geochimica et Cosmochimica Acta 65:13371353.
  • Lindsley D. H. 1983. Pyroxene thermometry. American Mineralogist 68:477493.
  • Mattioli G. S. and Wood B. J. 1986. Upper mantle oxygen fugacity recorded by spinel lherzolites. Nature 322:626628.
  • Mattioli G. S., Wood B. J., and Carmichael I. S. E. 1987. Ternaryspinel volumes in the system MgAl2O4-Fe3O4-γFe8/3O4: Implications for the effect of P on intrinsic fO2 measurements of mantle-xenolith spinels. American Mineralogist 72:468480.
  • McSween H. Y. and Labotka T. C. 1993. Oxidation during metamorphism of the ordinary chondrites. Geochimica et Cosmochimica Acta 57:11051114.
  • McSween H. Y. and Patchen A. D. 1989. Pyroxene thermobarometry in LL-group chondrites and implications for parent body metamorphism. Meteoritics 24:219226.
  • McSween H. Y., Sears D. W. G., and Dodd R. T. 1988. Thermal metamorphism. In Meteorites and the early solar system, edited by KerridgeJ. F. and MatthewsM. S. Tucson: University of Arizona Press. pp. 102113.
  • Miettinen J. 1999. Thermodynamic reassessment of Fe-Cr-Ni system with emphasis on the iron-rich corner. Calphad 23:231248.
  • Miyamoto M., Fujii N., and Takeda H. 1981. Ordinary chondrite parent body: An internal heating model. Proceedings, 12th Lunar and Planetary Science Conference. pp. 11451152.
  • Mueller R. F. 1964. Phase equilibria and the crystallization of chondritic meteorites. Geochimica et Cosmochimica Acta 28:189207.
  • Nafziger R. H. and Muan A. 1967. Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO”-SiO2. American Mineralogist 52:13641385.
  • Olsen E. J. and Bunch T. E. 1984. Equilibration temperatures of the ordinary chondrites: A new evaluation. Geochimica et Cosmochimica Acta 48:13631365.
  • Olsen E. J., Mayeda T. K., and Clayton R. N. 1981. Cristobalite-pyroxene in an L6 chondrite: Implications for metamorphism. Earth and Planetary Science Letters 56:8288.
  • O'Neill H. St. C., Pownceby M. I., and McCammon C. A. 2003. The magnesiowüstite: Iron equilibrium and its implications for the activity-composition relations of (Mg, Fe)2SiO4 olivine solid solutions. Contributions to Mineralogy and Petrology 146:308325.
  • Ozawa K. 1984. Olivine-spinel geospeedometry: Analysis of diffusion-controlled Mg-Fe2+ exchange. Geochimica et Cosmochimica Acta 48:25972611.
  • Petric A., Jacob K. T., and Alcock C. B. 1981. Thermodynamic properties of Fe3O4-FeAl2O4 spinel solid solutions. Journal of the American Ceramic Society 64:632639.
  • Rambaldi E. R. and Wasson J. T. 1984. Metal and associated phases in Krymka and Chainpur: Nebular formational processes. Geochimica et Cosmochimica Acta 48:18851897.
  • Reuter K. B., Williams D. B., and Goldstein J. I. 1989. Determination of the Fe-Ni phase diagram below 400 °C. Metallurgical Transactions 20A:719725.
  • Ringwood A. E. 1961. Chemical and genetic relationships among meteorites. Geochimica et Cosmochimica Acta 24:159197.
  • Rubin A. E., Fegley B., and Brett R. 1988. Oxidation state in chondrites. In Meteorites and the early solar system, edited by KerridgeJ. F. and MatthewsM. S. Tucson: University of Arizona Press. pp. 488511.
  • Sack R. O. and Ghiorso M. S. 1991a. An internally consistent model for the Thermodynamic properties of Fe-Mg-titanomagnetitealuminate spinels. Contributions to Mineralogy and Petrology 106:474505.
  • Sack R. O. and Ghiorso M. S. 1991b. Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications. American Mineralogist 76:827847.
  • Senderov E., Dogan A. U., and Navrotsky A. 1993. Nonstoichiometry of magnetite-ulvöspinel solid solutions quenched from 1300 °C. American Mineralogist 78:565573.
  • Snetsinger K. G., Keil K., and Bunch T. E. 1967. Chromite from “equilibrated” chondrites. American Mineralogist 52:13221331.
  • Sugimoto W., Kaneko N., Sugahara Y., and Kuroda K. 1997. Preparation of stoichiometric and nonstoichiometric magnesium titanate spinels. Journal of the Ceramic Society of Japan 105:101105.
  • Thy P., Lofgren G. E., and Imsland P. 1991. Melting relations and the evolution of the Jan Mayen magma system. Journal of Petrology 32:303332.
  • Van Schmus W. R. 1969. The mineralogy and petrology of chondritic meteorites. Earth Science Reviews 5:145184.
  • Van Schmus W. R. and Wood J. A. 1967. A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta 31:747765.
  • Virgo D., Luth R. W., Moats M. A., and Ulmer G. C. 1988. Constraints on the oxidation state of the mantle: An electrochemical and 57Fe Mössbauer study of mantle-derived ilmenites. Geochimica et Cosmochimica Acta 52:17811794.
  • Von Seckendorff V. and O'Neill H. St. C. 1993. An experimental study of Fe-Mg partitioning between olivine and orthopyroxene at 1173, 1273, and 1423 K and 1.6 GPa. Contributions to Mineralogy and Petrology 113:196207.
  • Walter L. S. and Doan A. S. 1969. Determination of oxygen activities of chondritic meteorites. Geological Society of America Abstracts with Programs 1:232233.
  • Wetherill G. W. and Chapman C. R. 1988. Asteroids and meteorites. In Meteorites and the early solar system, edited by KerridgeJ. F. and MatthewsM. S. Tucson: University of Arizona Press. pp. 3567.
  • Wilkison S. L. and Robinson M. S. 2000. Bulk density of ordinary chondrite meteorites and implications for asteroidal internal structure. Meteoritics & Planetary Science 35:12031213.
  • Williams R. J. 1971a. Reaction constants in the system Fe-MgO-SiO2-O2 at 1 atm between 900° and 1300 °C: Experimental results. American Journal of Science 270:334360.
  • Williams R. J. 1971b. Equilibrium temperatures, pressures, and oxygen fugacities of the equilibrated chondrites. Geochimica et Cosmochimica Acta 35:407411.
  • Willis J. and Goldstein J. I. 1983. A three-dimensional study of metal grains in equilibrated, ordinary chondrites. Proceedings, 14th Lunar and Planetary Science Conference. Journal of Geophysical Research 88:B287B292.
  • Wiser N. M. and Wood B. J. 1991. Experimental determination of activities in Fe-Mg olivine at 1400 K. Contributions to Mineralogy and Petrology 108:146153.
  • Wlotzka F. and Fredriksson K. 1980. Morro de Rocio, an unequilibrated H5 chondrite. Meteoritics 15:387388.
  • Young E. D. 2001. The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosophical Transactions of the Royal Society of London A 359:20952110.
  • Zanda B., Bourot-Denise M., Perron C., and Hewins R. H. 1994. Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Science 265:18461849.
  • Zinovieva N. G., Mitreikina O. B., and Granovsky L. B. 1997. Origin mechanism of hercynite-kamacite objects: Evidence for liquid immiscibility phenomena in the Yamato-82133 ordinary chondrite (H3). Antarctic Meteorite Research 10:299311.