SEARCH

SEARCH BY CITATION

REFERENCES

  • Ainsaar L., Meidla T., and Martma T. 1999. Evidence for a widespread carbon isotopic event associated with late Middle Ordovician sedimentological and faunal changes in Estonia. Geological Magazine 136: 4962.
  • Ainsaar L., Suuroja K., and Semidor M. 2002. Long-term effects of the Kärdla crater (Hiiumaa, Estonia) on Late Ordovician carbonate sedimentation. Deep-Sea Research II 49: 11451155.
  • Allen C. G., Gooding J. L., and Keil K. 1982. Hydrothermally altered impact melt rock and breccia: Contributions to the soil of Mars. Journal of Geophysical Research 87: 10,08310,101.
  • Ames D. E., Watkinson D. H., and Parrish R. R. 1998. Dating of a hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 26: 447450.
  • Ames D. E., Pope K. O., Jonasson I. R., and Hofmann B. 2002. Chemical sediments associated with the impact-generated hydrothermal system, Vermilion formation, Sudbury structure. Abstracts with Programs 34: 544.
  • Cockell C. S. and Lee P. 2002. The biology of impact craters: A review. Biological Reviews 77: 279310.
  • French B. M. 1998. Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. Houston: Lunar and Planetary Institute. 120 p.
  • Goldsmith J. R., Graf D. L., and Heard H. C. 1961. Lattice constants of the calcium-magnesium carbonates. American Mineralogist 46: 453457.
  • Grahn Y., Nõlvak J., and Paris F. 1996. Precise chitinozoan dating of Ordovician impact events in Baltoscandia. Journal of Micropaleontology 15: 2125.
  • Grieve R. A. F., Langenhorst F., and Stäffler D. 1996. Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteoritics & Planetary Science 31: 635.
  • Hagerty J. J. and Newsom H. E. 2003. Hydrothermal alteration at the Lonar Lake impact structure, India: Implications for impact cratering on Mars. Meteoritics & Planetary Science 38: 365381.
  • Hode T., von Dalwigk I., and Broman C. 2003. A hydrothermal system associated with the Siljan impact structure, Sweden: Implications for the search for fossil life on Mars. Astrobiology 3: 271289.
  • Jõeleht A., Kirsimäe K., Plado J., Versh E., and Ivanov B. 2005. Cooling of the Kärdla impact crater: II. Impact and geothermal modeling. Meteoritics & Planetary Science. This issue.
  • Kirsimäe K., Suuroja S., Kirs J., Kärki A., Polikarpus M., Puura V., and Suuroja K. 2002. Hornblende alteration and fluid inclusions in Kärdla impact crater, Estonia: Evidence for impact-induced hydrothermal activity. Meteoritics & Planetary Science 37: 449457.
  • Komor S. C., Valley J. W., and Brown P. E. 1988. Fluid inclusion evidence for impact heating at the Siljan Ring, Sweden. Geology 16: 711715.
  • Koppelmaa H., Niin M., and Kivisilla J. 1996. About the petrography and mineralogy of the crystalline basement rocks in the Kärdla crater area, Hiiumaa Island, Estonia. Bulletin of the Geological Survey of Estonia 6: 424.
  • Kraus W. and Nolze G. 1996. POWDER CELL: A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography 29: 301303.
  • Land L. S. 1985. The origin of massive dolomite. Journal of Geological Education 33: 112125.
  • McCarville P. and Crossey L. J. 1996. Post-impact hydrothermal alteration of the Manson impact structure. In The Manson impact structure, Iowa: Anatomy of an impact crater, edited by KoeberlC. and AndersonR. R. GSA Special Paper 302. Boulder: Geological Society of America. pp. 347376.
  • Mändar H., Vajakas T., Felche J., and Dinnebier R. 1996. AXES: A program for preparation of parameter input files for FULLPROF. Journal of Applied Crystallography 29: 304.
  • Naumov M. V. 2002. Impact-generated hydrothermal systems: Data from Popigai, Kara, and Puchezh-Katunki impact structures. In Impacts in Precambrian shields, edited by PladoJ. and PesonenL. J. Berlin: Springer. pp. 117171.
  • Newsom H. E. 1980. Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44: 207216.
  • Newsom H. E., Brittelle G. E., Hibbitts C. A., Crossey L. J., and Kudo A. M. 1996. Impact crater lakes on Mars. Journal of Geophysical Research 101: 14,95114,956.
  • O'Neil J. R., Clayton R. N., and Mayeda T. K. 1969. Oxygen isotope fractionation between divalent metal carbonates. Journal of Chemical Physics 51: 55475558.
  • Osinski G. R., Spray J. G., and Lee P. 2001. Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: Generation of a transient, warm, wet oasis. Meteoritics & Planetary Science 36: 731745.
  • Puura V. and Huhma H. 1993. Paleoproterozoic age of the East Baltic granulitic crust. Precambrian Research 64: 289294.
  • Puura V. and Suuroja K. 1992. Ordovician impact crater at Kärdla, Hiiumaa Island, Estonia. Tectonophysics 216: 143156.
  • Puura V., Kärki A., Kirs J., Kirsimäe K., Kleesment A., Konsa M., Niin M., Plado J., Suuroja K., and Suuroja S. 2000. Impact-induced replacement of plagioclase by K-feldspar in granitoids and amphibolites at the Kärdla crater, Estonia. In Impacts and the early Earth, edited by GilmourI. and KoeberlC. Berlin: Springer. pp. 417445.
  • Puura V., Huber H., Kirs J., Kärki A., Suuroja K., Kirsimäe K., Kivisilla J., Kleesment A., Konsa M., Preeden U., Suuroja S., and Koeberl C. 2004. Geology, petrography, shock petrography, and geochemistry of impactites and target rocks from the Kärdla crater, Estonia. Meteoritics & Planetary Science 39: 425451.
  • Rye R. O. and Ohmoto H. 1974. Sulfur and carbon isotopes and ore genesis: A review. Economic Geology 69: 826842.
  • ReederJ. R., ed. 1983. Carbonates: Mineralogy and chemistry. Washington D.C.: Mineralogical Society of America. 394 p.
  • Sturkell E. F. F., Broman C., Forsberg P., and Torssander P. 1998. Impact-related hydrothermal activity in the Lockne impact structure, Jämtland, Sweden. European Journal of Mineralogy 10: 589606.
  • Suuroja K. 2002. Natural Resources of the Kärdla impact structure, Hiiumaa Island, Estonia. In Impacts in Precambrian shields, edited by PladoJ. and PesonenL. J. Berlin: Springer. pp. 295306.
  • Suuroja K., Suuroja S., All T., and Floden T. 2002. Kärdla (Hiiumaa Island, Estonia): The buried and well-preserved Ordovician marine impact structure. Deep-Sea Research II 49: 11211144.
  • Suuroja K., Kadastik E., and Mardim T. 1994. Report of the complex geological mapping in scale 1:50,000 in Hiiumaa Island. Report No. 4696. Tallinn: Geological Survey of Estonia. In Estonian.
  • Taylor J. C. 1991. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction 6: 29.
  • Taylor H. P., Jr. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposits. Economic Geology 69: 843883.
  • Tobin K. J. and Walker K. R. 1997. Ordovician oxygen isotopes and paleotemperatures. Palaeogeography, Palaeoclimatology, Palaeoecology 129: 269290.
  • Worden R. H. and Rushton J. C. 1992. Digenetic K-feldspar textures: A TEM study and model for diagenetic feldspar growth. Journal of Sedimentary Petrology 62: 779789.