SEARCH

SEARCH BY CITATION

REFERENCES

  • Arvidson R. E., Coradini M., Carusi A., Coradini A., Fulchignoni M., Federico C., Funiciello R., and Salomone M. 1976. Latitudinal variation of wind erosion of crater ejecta deposits on Mars. Icarus 27: 503516.
  • Barlow N. G. 2005a. A review of Martian impact crater ejecta structures and their implications for target properties. In Large meteorite impacts III, edited by KenkmannT., HörzF., and DeutschA. Boulder, Colorado: Geological Society of America. pp. 433442.
  • Barlow N. G. 2005b. A new model for pedestal crater formation (abstract #3041). Workshop on the Role of Volatiles and Atmospheres on Martian Impact Craters. pp. 1718.
  • Barlow N. G. and Bradley T. L. 1990. Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus 87: 156179.
  • Barlow N. G. and Perez C. B. 2003. Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. Journal of Geophysical Research, doi:10.1029/2002JE002036.
  • Barlow N. G., Boyce J. M., Costard F. M., Craddock R. A., Garvin J. B., Sakimoto S. E. H., Kuzmin K. O., Roddy D. J., and Soderblom L. A. 2000. Standardizing the nomenclature of Martian impact crater ejecta morphologies. Journal of Geophysical Research 105: 26,73326,738.
  • Barnouin-Jha O. S. and Schultz P. H. 1998. Lobateness of impact ejecta deposits from atmospheric interactions. Journal of Geophysical Research 103: 25,73925,756.
  • Boyce J. M. and Mouginis-Mark P. J. 2005. Martian craters viewed by the THEMIS instrument: Double-layer ejecta craters (abstract #3009). Workshop on the Role of Volatiles and Atmospheres on Martian Impact Craters. pp. 2728.
  • Bringemeier D. 1994. Petrofabric examination of the main suevite of the Otting Quarry, Nördlinger Ries, Germany. Meteoritics 29: 417422.
  • Carr M. H. 1977. Distribution and emplacement of ejecta around Martian impact craters. In Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon Press. pp. 593602.
  • Carr M. H., Crumpler L. S., Cutts J. A., Greeley R., Guest J. E., and Masursky H. 1977. Martian impact craters and emplacement of ejecta by surface flow. Journal of Geophysical Research 82: 40554065.
  • Christensen P. R., Jakosky B. M., Kieffer H. H., Malin M. C., McSween H. Y., Jr., Nealson K., Mehall G. L., Silverman S. H., Ferry S., Caplinger M., and Ravine M. 2004. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Science Reviews 110: 85110.
  • Clifford S. M. 1993. A model for the hydrologic and climatic behavior of water on Mars. Journal of Geophysical Research 98: 10,97311,016.
  • Costard F. M. and Kargel J. S. 1995. Outwash plains and thermokarst on Mars. Icarus 114: 93112.
  • Dence M. R. 1968. Shock zoning at Canadian craters: Petrography and structural implications. In Shock metamorphism of natural materials, edited by FrenchB. M. and ShortN. M. Baltimore, Maryland: Mono Book Corp. pp. 169184.
  • Dressler B. O., Sharpton V. L., Schwandt C. S., and Ames D. E. 2004. Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: Petrography, geochemistry, and depositional environment. Meteoritics & Planetary Science 39: 857878.
  • Fredriksson K., Dube A., Milton D. J., and Balasundaram M. S. 1973. Lonar Lake, India: An impact crater in basalt. Science 180: 862864.
  • French B. M. 1998. Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. Houston: Lunar and Planetary Institute. 120 p.
  • Garvin J. B., Sakimoto S. E. H., Frawley J. J., and Schnetzler C. 2000. North polar region craterforms on Mars: Geometric characteristics from the Mars Orbiter Laser Altimeter. Icarus 144: 329352.
  • Gault D. E. and Greeley R. 1978. Exploratory experiments of impact craters formed in viscous-liquid targets: Analogs for Martian rampart craters Icarus 34: 486495.
  • Graup G. 1999. Carbonate-silicate liquid immiscibility upon impact melting: Ries crater, Germany. Meteoritics & Planetary Science 34: 425438.
  • Grant J. A. and Schultz P. H. 1992. Erosion of ejecta at Meteor Crater, Arizona. Journal of Geophysical Research 98: 15,03315,047.
  • Grieve R. A. F. 1987. Terrestrial impact structures. Annual Reviews of Earth and Planetary Science 15: 245270.
  • Grieve R. A. F. and Cintala M. J. 1981. A method for estimating the initial impact conditions of terrestrial cratering events, exemplified by its application to Brent crater, Ontario. Proceedings, 12th Lunar and Planetary Science Conference. pp. 6071621.
  • Grieve R. A. F., Dence M. R., and Robertson P. B. 1977. Cratering processes: As interpreted from the occurrence of impact melts. In Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon Press. pp. 791814.
  • Hartmann W. K. and Barlow N. G. 2006. Nature of the Martian uplands: Effect on Martian meteorite age distribution and secondary cratering. Meteoritics & Planetary Science 41. This issue.
  • Hörz F. 1982. Ejecta of the Ries crater, Germany. In Geological implications of impacts of large asteroids and comets on the Earth, edited by SilverL. T. and SchultzP. H. Boulder, Colorado: Geological Society of America. pp. 3955.
  • Hörz F., Ostertag R., and Rainey D. A. 1983. Bunte breccia of the Ries: Continuous deposits of large impact craters. Reviews of Geophysics and Space Physics 21: 16671725.
  • Hörz F., Mittlefehldt D. W., See T. H., and Galindo C. 2002. Petrographic studies of the impact melts from Meteor Crater, Arizona, USA. Meteoritics & Planetary Science 37: 501531.
  • Hüttner R. and Schmidt-Kaler H. 1999. Erläuterungen zur geologischen Karte des Rieses 1:50,000. Geologica Bavarica 104: 776.
  • Jones A. P., Claeys P., and Heuschkel S. 2000. Impact melting of carbonates from the Chicxulub Crater. In Impacts and the early Earth, edited by GilmourI. and KoeberlC. pp. 343361.
  • Kieffer S. W. and Simonds C. H. 1980. The role of volatiles and lithology in the impact-cratering process. Reviews of Geophysics and Space Physics 18: 143181.
  • Kieffer S. W., Phakey D. P., and Christie J. M. 1976. Shock processes in porous quartzite: Transmission electron microscope observations and theory. Contributions to Mineralogy and Petrology 59: 4193.
  • Koeberl C. 1994. Tektite origin by hypervelocity asteroidal or cometary impact: Target rocks, source craters, and mechanisms. In Large meteorite impacts and planetary evolution, edited by DresslerB. O., GrieveR. A. F. and SharptonV. L. Boulder, Colorado: Geological Society of America. pp. 133152.
  • Kring D. A. 2005. Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: Comparing the Ries (∼24 km) and Chicxulub (∼180 km) impact craters. Chemie der Erde 65: 146.
  • Malin M. C. and Edgett K. S. 2000. Sedimentary rocks of early Mars. Science 290: 19271937.
  • McCauley J. F. 1973. Mariner 9 evidence for wind erosion in the equatorial and mid-latitude regions of Mars. Journal of Geophysical Research 78: 41234136.
  • Melosh H. J. 1989. Impact cratering: A geologic process. New York: Oxford University Press. 245 p.
  • Metzler A., Ostertag R., Redeker H. J., and Stöffler D. 1988. Composition of the crystalline basement and shock metamorphism of crystalline and sedimentary target rocks at the Haughton impact crater, Devon Island, Canada. Meteoritics 23: 197207.
  • Mouginis-Mark P. 1981. Ejecta emplacement and modes of formation of Martian fluidized ejecta craters. Icarus 45: 6076.
  • Mouginis-Mark P. 1987. Water or ice in the Martian regolith? Clues from rampart craters seen at very high resolution. Icarus 71: 268286.
  • Neal J. E. and Barlow N. G. 2004. Layered ejecta craters on Ganymede: Comparisons with Martian analogs (abstract #1121). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Newsom H. E. 2001. Central remnant craters on Mars—Localization of hydrothermal alteration at the edge of crater floors? (abstract #1402). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Newsom H. E., Graup G., Iseri D. A., Geissman J. W., and Keil K. 1990. The formation of the Ries impact structure, West Germany: Evidence of atmospheric interactions during a large cratering event. In Global catastrophes in Earth history: An interdisciplinary conference on impacts, volcanism, and mass mortality, edited by SharptonV. L. and WardP. D. Boulder, Colorado: Geological Society of America. pp. 195205.
  • Osinski G. R. 2004. Impact melt flows on Earth? Evidence from the Ries impact structure, Germany. Earth and Planetary Science Letters 226: 529543.
  • Osinski G. R. 2005. Hydrothermal activity associated with the Ries impact event, Germany. Geofluids 5: 202220.
  • Osinski G. R. and Spray J. G. 2001. Impact-generated carbonate melts: Evidence from the Haughton structure, Canada. Earth and Planetary Science Letters 194: 1729.
  • Osinski G. R. and Spray J. G. 2003. Evidence for the shock melting of sulfates from the Haughton impact structure, Arctic Canada. Earth and Planetary Science Letters 215: 357370.
  • Osinski G. R. and Spray J. G. 2005. Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science 40: 18131834.
  • Osinski G. R., Bunch T. E., and Wittke J. 2003. Evidence for shock melting of carbonates from Meteor Crater, Arizona. Meteoritics & Planetary Science 38: A42.
  • Osinski G. R., Grieve R. A. F., and Spray J. G. 2004. The nature of the groundmass of surficial suevites from the Ries impact structure, Germany, and constraints on its origin. Meteoritics & Planetary Science 39: 16551684.
  • Osinski G. R., Lee P., Spray J. G., Parnell J., Lim D., Bunch T. E., Cockell C. S., and Glass B. 2005a. Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science 40: 17591776.
  • Osinski G. R., Spray J. G., and Lee P. 2005b. Impactites of the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science 40: 17891812.
  • Pierazzo E., Artemieva N. A., and Ivanov B. A. 2005. Starting conditions for hydrothermal systems underneath Martian craters: Hydrocode modeling. In Large meteorite impacts III, edited by KenkmannT., HörzF., and DeutschA. Boulder, Colorado: Geological Society of America. pp. 443457.
  • Pohl J., Stöffler D., Gall H., and Ernstson K. 1977. The Ries impact crater. In Impact and explosion cratering, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon Press. pp. 343404.
  • Pope K. O., Ocampo A. C., Fischer A. G., Alvarez W., Fouke B. W., Webster C. L., Vega F. J., Smit J., Fritsche A. E., and Claeys P. 1999. Chicxulub impact ejecta from Albion Island, Belize. Earth and Planetary Science Letters 170: 351364.
  • Redeker H. J. and Stöffler D. 1988. The allochthonous polymict breccia layer of the Haughton impact crater, Devon Island, Canada. Meteoritics 23: 185196.
  • Schmidt-Kaler H. 1978. Geological setting and history. In Principal exposures of the Ries meteorite crater in southern Germany, edited by ChaoE. C. T., HüttnerR., and Schmidt-KalerH. Munich: Bayerisches Geologisches Landesamt. pp. 811.
  • Schönian F., Stöffler D., and Kenkmann T. 2004. The fluidized Chicxulub ejecta blanket, Mexico: Implications for Mars (abstract #1848). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Schultz P. H. 1992. Atmospheric effects on ejecta emplacement. Journal of Geophysical Research 97: 11,62311,662.
  • Schultz P. H. and Gault D. E. 1979. Atmospheric effects on Martian ejecta emplacement. Journal of Geophysical Research 84: 76697687.
  • Schultz P. H. and Mustard J. F. 2004. Impact melts and glasses on Mars. Journal of Geophysical Research, doi:10.1029/2002JE002025, 2004.
  • Schultz P. H., Zarate M., Hames W. E., Camilión C., and King J. 1998. A 3.3 Ma impact in Argentina and possible consequences. Science 282: 261263.
  • Sharpton V. L., Marin L. E., Carney J. L., Lee S., Ryder G., Schuraytz B. C., Sikora P., and Spudis P. D. 1996. A model of the Chicxulub impact basin based on evaluation of geophysical data, well logs, and drill core samples. In The Cretaceous-Tertiary event and other catastrophes in Earth history, edited by RyderG., FastovskyD., and GartnerS. Boulder, Colorado: Geological Society of America. pp. 5574.
  • Sigurdsson H., D'Hondt S., Arthur M. A., Bralower T. J., Zachos J. C., von Fassen M., and Channell J. E. T. 1991. Glass from the Cretaceous/Tertiary boundary on Haiti. Nature 349: 482487.
  • Simonson B. M. and Glass B. P. 2004. Spherule layers—Records of ancient impacts. Annual Review of Earth and Planetary Science 32: 329361.
  • Squyres S. W., Clifford S. M., Kuzmin, R. O., Zimbelman J. R., and Costard F. M. 1992. Ice in the Martian regolith. In Mars, edited by KiefferH. H., JakoskyB. M., SnyderC. W., and MatthewsM. S. Tucson, Arizona: The University of Arizona Press. pp. 523554.
  • Squyres S. W., Arvidson R. E., Bel J. F. III, Bruckner J., Cabrol N. A., Calvin W., Carr M. H., Christensen P. R., Clark B. C., Crumpler L., Des Marais D. J., D'Uston C., Economou T., Farmer J., Farrand W., Folkner W., Golombek M., Gorevan S., Grant J. A., Greeley R., Grotzinger J., Haskin L., Herkenhoff K. E., Hviid S., Johnson J., Klingelhofer G., Knoll A., Landis G., Lemmon M., Li R., Madsen M. B., Malin M. C., McLennan S. M., McSween H. Y., Jr., Ming D. W., Moersch J., Morris R. V., Parker T., Rice J. W., Jr., Richter L., Rieder R., Sims M., Smith M., Smith P., Soderblom L. A., Sullivan R., Wanke H., Wdowiak T., Wolff M., and Yen A. 2004. The Spirit Rover's Athena Science Investigation at Gusev crater, Mars. Science 305: 794799.
  • Stewart S. T., Louzada K. L., Maloof A. C., Newsom H. E., Weiss B. P., and Wright S. P. 2005. Field observations of ground-hugging ejecta flow at Lonar crater, India (abstract #3045). Workshop on the Role of Volatiles and Atmospheres on Martian Impact Craters. CD-ROM.
  • Stewart S. T. and Ahrens T. J. 2005. Shock properties of H2O ice. Journal of Geophysical Research, doi:10.1029/2004JE002305, 2005.
  • Stöffler D. and Grieve R. A. F. 1994. Classification and nomenclature of impact metamorphic rocks: A proposal to the IUGS Subcommission on the systematics of metamorphic rocks (abstract). 24th Lunar and Planetary Science Conference. pp. 13471348.
  • Stöffler D. and Grieve R. A. F. 1996. IUGS classification and nomenclature of impact metamorphic rocks: Towards a final proposal (abstract). International Symposium on the Role of Impact Processes in the Geological and Biological Evolution of Planet Earth. pp. 8990.
  • Stöffler D., Gault D. E., Wedekind J., and Polkowski G. 1975. Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta. Journal of Geophysical Research 80: 40624077.
  • Stöffler D., Ewald U., Ostertag R., and Reimold W. U. 1977. Research drilling Nördlingen 1973 (Ries): Composition and texture of polymict impact breccias. Geologica Bavarica 75: 163189.
  • Strom R. G., Croft S. K., and Barlow N. G. 1992. The Martian impact-cratering record. In Mars, edited by KiefferH. H., JakoskyB. M., SnyderC. W., and MatthewsM. S. Tucson, Arizona: The University of Arizona Press. pp. 383423.
  • Tuchscherer M. G., Reimold W. U., Koeberl C., Gibson R. L., and De Bruin D. 2004. First petrographic results on impactites from the Yaxcopoil-1 borehole, Chicxulub structure, Mexico. Meteoritics & Planetary Science 39: 899931.
  • von Engelhardt W. 1990. Distribution, petrography and shock metamorphism of the ejecta of the Ries crater in Germany—A review. Tectonophysics 171: 259273.
  • von Engelhardt W., Arndt J., Fecker B., and Pankau H. G. 1995. Suevite breccia from the Ries crater, Germany: Origin, cooling history and devitrification of impact glasses. Meteoritics 30: 279293.
  • Wohletz K. H. and Sheridan M. F. 1983. Martian rampart crater ejecta: Experiments and analysis of melt-water interaction. Icarus 56: 1537.
  • Ward P. D., Keller G., Stinnesbeck W., and Adatte T. 1995. Yucatan subsurface stratigraphy: Implications and constraints for the Chicxulub impact. Geology 23: 873876.