SEARCH

SEARCH BY CITATION

REFERENCES

  • Amsden A. A., Ruppel H. M., and Hirt C. W. 1980. SALE: A simplified ALE computer program for fluid flows at all speeds. Report #LA-8095. Los Alamos, New Mexico: Los Alamos National Laboratories. 101 p.
  • Artemieva N., Krap T., and Milkereit B. 2004. Investigating the Lake Bosumtwi impact structure: Insight from numerical modeling. Geochemistry Geophysics Geosystems 5, doi:10.1029/2004GC000733.
  • Bjork R. L. 1961. Analysis of the formation of Meteor Crater, Arizona: A preliminary report. Journal of Geophysical Research 66: 33793387.
  • Bottke W. F., Jr., Nolan M. C., Greenberg R., and Kolvoord R. A. 1994. Collisional lifetimes and impact statistics of near-Earth asteroids. In Hazards due to comets and asteroids, edited by GehrelsT. Tucson, Arizona: The University of Arizona. pp. 337357.
  • Collins G. S. and Wünnemann K. 2005. How big was the Chesapeake Bay impact? Insight from numerical modeling. Geology 33: 925928.
  • Collins G. S., Melosh H. J., Morgan J. V., and Warner M. R. 2002. Hydrocode simulations of Chicxulub crater collapse and peakring formation. Icarus 157: 2433.
  • Collins G. S., Melosh H. J., and Ivanov B. A. 2004. Modeling damage and deformation in impact simulations. Meteoritics & Planetary Science 39: 217231.
  • Crawford D. A. and Barnouin-Jha O. S. 2004. Computational investigations of the Chesapeake Bay impact structure (abstract #1757). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Dienes J. K. and Walsh J. M. 1970. Theory of impact: Some general principles and the method of eulerian codes. In High-velocity impact phenomena, edited by KinslowR. New York: Academic Press. pp. 46104.
  • French B. M. 1998. Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. Houston, Texas: Lunar and Planetary Institute. 120 p.
  • Fredrich J. T., Evans B., and Wong T. 1990. Effect of grain size on brittle and semi-brittle strength: Applications for micromechanical modelling of failure in compression. Journal of Geophysical Research 95: 10,90710,920.
  • Grieve R. A. F. and Cintala M. J. 1992. An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 27: 526538.
  • Grieve R. A. F., Langenhorst F., and Stöffler D. 1996. Shock metamorphism of quartz in nature and experiment II: Significance in geoscience. Meteoritics & Planetary Science 31: 635.
  • Hörz F. 1968. Statistical measurements of deformation structures and refractive indices in experimentally shock-loaded quartz. In Shock metamorphism of natural minerals, edited by FrenchB. M. and ShortN. M. Baltimore: Mono Book Corporation. pp. 243353.
  • Howard K. A., Offield T. W., and Wilshire H. G. 1972. Structure of Sierra Madera, Texas, as a guide to central peaks of lunar craters. Geological Society of America Bulletin 83: 27952808.
  • Huson S. A., Foit F. F., Watkinson A. J., and Pope M. C. 2006. X-ray diffraction powder patterns and thin section observations from the Sierra Madera impact structure (abstract #2377). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Ivanov B. A. 2005. Numerical modeling of the largest terrestrial meteorite craters. Solar System Research 39: 381409.
  • Ivanov B. A. and Artemieva N. A. 2002. Numerical modeling of the formation of large impact craters. In Catastrophic events and mass extinctions: Impact and beyond. Washington, D.C.: Geological Society of America. pp. 619630.
  • Ivanov B. A., De Niem D., and Neukum G. 1997. Implementation of dynamic strength models into 2D hydrocodes: Applications for atmospheric break-up and impact cratering. International Journal of Impact Engineering 17: 375386.
  • Ivanov B. A., Langenhorst F., Deutsch A., and Hornemann U. 2002. How strong was impact-induced CO2 degassing in the K/T event? Numerical modeling of shock recovery experiments. In Catastrophic events and mass extinctions: Impact and beyond. Washington, D.C.: Geological Society of America. pp. 587594.
  • Kenkmann T., Jahn A., Scherler D., and Ivanov B. A. 2005. Structure and formation of a central uplift: A case study at the Upheaval Dome impact crater, Utah. In Large meteorite impacts III, edited by KenkmannT., HörzF., and DeutschA. Washington, D.C.: Geological Society of America. pp. 85115.
  • Lockner D. A. 1995. Rock failure. In Rock physics and phase relations: A handbook of physical constants, edited by AhrensT. J. Washington, D.C.: American Geophysical Union. pp. 127147.
  • Lundborg N. 1968. Strength of rock-like materials. International Journal of Rock Mechanics and Mining Sciences 5: 427454.
  • Melosh H. J. 1979. Acoustic fluidization: A new geologic process Journal of Geophysical Research 84: 75137520.
  • Melosh H. J. 1989. Impact cratering: A geologic process. New York: Oxford University Press. 245 p.
  • Melosh H. J. and Ivanov B. A. 1999. Impact crater collapse. Annual Review of Earth and Planetary Science 27: 385415.
  • Müller W. F. and Defourneaux M. 1968. Deformationsstrukturen in Quartz als Indikator für Stosswellen: Eine experimentelle Untersuchung an Quartz-Einkristallen. Zeitschrift für Geophysik 34: 483504.
  • Osinski G. R. and Spray J. G. 2005. Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science 40: 18131834.
  • Osinski G. R., Lee P., Spray J. G., Parnell J., Lim D. S. S., Bunch T. E., Cockell C. S., and Glass B. 2005. Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science 40: 17591776.
  • Pierazzo E. and Collins G. 2003. A brief introduction to hydrocode modeling of impact cratering. In Submarine craters and ejectacrater correlation, edited by ClaeysP. and HenningD. New York: Springer. pp. 323340.
  • Roddy D. J. and Davis L. K. 1977. Shatter cones formed in largescale experimental explosion craters. In Impact and explosion cratering: Planetary and terrestrial implications, edited by RoddyD. J., PepinR. O., and MerrillR. B. New York: Pergamon. pp. 715750.
  • Roddy D. J., Schuster S. H., Kreyenhagen K. N., and Orphal D. L. 1980. Computer code simulations of the formation of Meteor Crater, Arizona: Calculations MC-1 and MC-2. Proceedings, 11th Lunar and Planetary Science Conference. pp. 22752308.
  • Schmidt R. M. and Housen K. R. 1987. Some recent advances in the scaling of impact and explosion cratering. International Journal of Impact Engineering 5: 543560.
  • Shuvalov V., Ormö J., and Lindström M. 2005. Hydrocode simulation of the Lockne marine target impact event. In Impact tectonics, edited by KoeberlC. and HenkelH. New York: Springer. pp. 405422.
  • Tillotson J. M. 1962. Metallic equation of state for hypervelocity impact. General Atomic Report #GA-3216. San Diego, California: Advanced Research Project Agency. 141 p.
  • Turtle E. P., Pierazzo E., Collins G. S., Osinski G. R., Melosh H. J., Morgan J. V., and Reimold W. U. 2005. Impact structures: What does crater diameter mean? In Large meteorite impacts III, edited by KenkmannT., HörzF., and DeutschA. Washington, D.C.: Geological Society of America. pp. 124.
  • Wilshire H. G., Offield T. W., Howard K. A., and Cummings D. 1972. Geology of the Sierra Madera cryptoexplosion structure, Pecos County, Texas. U.S. Geological Survey Professional Paper #599-H. 42 p.
  • Wünnemann K. and Ivanov B. A. 2003. Numerical modeling of the impact crater depth-diameter dependence in an acoustically fluidized target. Planetary and Space Sciences 51: 831845.
  • Wünnemann K., Morgan J. V., and Jödicke H. 2005. Is Ries crater typical for its size? An analysis based on old and new geophysical data and numerical modeling. In Large meteorite impacts III, edited by KenkmannT., HörzF., and DeutschA. Washington, D.C.: Geological Society of America. pp. 6783.
  • Wünnemann K., Collins G. S., and Melosh H. J. 2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180: 514527.
  • Van Lopik J. R. and Geyer R. A. 1963. Gravity and magnetic anomalies of the Sierra Madera, Texas, “dome.” Science 142: 4547.