SEARCH

SEARCH BY CITATION

REFERENCES

  • Anders E. 1989. Pre-biotic organic matter from comets and asteroids. Nature 342: 255257.
  • Bada J. L., Glavin D. P., McDonald G. D., and Becker L. 1998. A search for amino acids in Martian meteorite ALH 84001. Science 279: 362365.
  • Bernstein M. P., Dworkin J. P., Cooper G. W., Sandford S. A., and Allamandola L. J. 2002. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416: 401403.
  • Botta O. and Bada J. L. 2002a. Extraterrestrial organic compounds in meteorites. Surveys in Geophysics 23: 411467.
  • Botta O. and Bada J. L. 2002b. Amino acids in the Antarctic CM meteorite LEW 90500 (abstract #1391). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • Brinton K. L. F., Engrand C., Glavin D. P., Bada J. L., and Maurette M. 1998. A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Origins of Life and Evolution of the Biosphere 28: 413424.
  • Chizmadia L. and Brearley A. J. 2003. Mineralogy and textural characteristics of fine-grained rims in the Yamato-791198 CM2 carbonaceous chondrite: Constraints on the location of aqueous alteration (abstract #1419). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Chyba C. and Sagan C. 1992. Endogenous production, exogenous delivery, and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 355: 125132.
  • Cooper G. W. and Cronin J. R. 1995. Linear and cyclic aliphatic carboxamides of the Murchison meteorite-hydrolyzable derivatives of amino-acids and other carboxylic acids. Geochimica et Cosmochimica Acta 59: 10031015.
  • Cronin J. R. 1976a. Acid-labile amino acid precursors in the Murchison meteorite. I. Chromatographic fractionation. Origins of Life and Evolution of the Biosphere 7: 337342.
  • Cronin J. R. 1976b. Acid-labile amino acid precursors in the Murchison meteorite. II. A search for peptides and amino acyl amides. Origins of Life and Evolution of the Biosphere 7: 343348.
  • Cronin J. R. and Moore C. B. 1971. Amino acid analyses of the Murchison, Murray, and Allende carbonaceous chondrites. Science 172: 13271329.
  • Cronin J. R. and Pizzarello S. 1983. Amino acids in meteorites. Advances in Space Research 3: 518.
  • Cronin J. R. and Chang S. 1993. Organic matter in meteorites: Molecular and isotopic analyses of the Murchison meteorite. In The chemistry of life's origin, edited by GreenbergJ. M., Mendoza-GomezC. X., and PirronelloV. Dordrecht, The Netherlands: Kluwer. pp. 209258.
  • Cronin J. R., Pizzarello S., and Moore C. B. 1979a. Amino acids in an Antarctic carbonaceous chondrite. Science 206: 335337.
  • Cronin J. R., Gandy W. E., and Pizzarello S. 1979b. Amino acid analysis with o-pthaldialdehyde detection: Effects of reaction temperature and thiol on fluorescence yields. Analytical Biochemistry 93: 174179.
  • Cronin J. R., Gandy W. E., and Pizzarello S. 1981. Amino acids of the Murchison meteorite. I. Six carbon acyclic primary alpha-amino alkanoic acids. Journal of Molecular Evolution 17: 265272.
  • Cronin J. R., Yuen G. U., and Pizzarello, S. 1982. Gas chromatographic-mass spectral analysis of the five-carbon β-, γ-and δ-amino alkanoic acids. Analytical Biochemistry 124: 139149.
  • Delsemme A. H. 1992. Cometary origin of carbon, nitrogen, and water on the Earth. Origins of Life and Evolution of the Biosphere 21: 279298.
  • Ehrenfreund P., Glavin D. P., Botta O., Cooper G., and Bada J. L. 2001. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites. Proceedings of the National Academy of Sciences 98: 21382141.
  • Engel M. and Macko S. 1997. Isotopic evidence for extraterrestrial non-racemic amino-acids in the Murchison meteorite. Nature 389: 265268.
  • Fenn J. B., Mann M., Meng C. K., Wong S. F., and Whitehouse C. M. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 6471.
  • Glavin D. P., Bada J. L., Brinton K. L. F., and McDonald G. D. 1999. Amino acids in the Martian meteorite Nakhla. Proceedings of the National Academy of Sciences 96: 88358838.
  • Glavin D. P. and Bada J. L. 2001. Survival of amino acids in micrometeorites during atmospheric entry. Astrobiology 1: 259269.
  • Glavin D. P. and Dworkin J. P. 2006. Investigation of isovaline enantiomeric excesses in CM meteorites using liquid chromatography time-of-flight mass spectrometry (abstract). Astrobiology 6: 105.
  • Glavin D. P., Matrajt G., and Bada J. L. 2004. Re-examination of amino acids in Antarctic micrometeorites. Advances in Space Research 33: 106113.
  • Glavin D. P., Aubrey A., Dworkin J. P., Botta O., and Bada J. L. 2005. Amino acids in the Antarctic Martian meteorite MIL 03346 (abstract #1920). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Gyimesi-Forrás K., Leitner A., Akasaka K., and Lindner W. 2005. Comparative study on the use of ortho-phthaldialdehyde, naphthalene-2,3-dicarboxaldehyde and anthracene-2,3-dicarboxaldehyde reagents for α-amino acids followed by the enantiomer separation of the formed isoindolin-1-one derivatives using quinine-type chiral stationary phases. Journal of Chromatography A 1083: 8088.
  • Hanczkó R., Kutlán D., Tóth F., and Molnár-Perl I. 2004. Behavior and characteristics of the o-pthaldialdehyde derivatives of n-C6-C8 amines and phenylethylamines with four additive SH-containing reagents. Journal of Chromatography A 1031: 5166.
  • Jull A. J. T., Cloudt S., and Cielaszyk E. 1998. 14C terrestrial ages of meteorites from Victoria Land, Antarctica and the infall rate of meteorites. In Meteorites: Flux with time and impact effects, edited by McCallG. J., HutchisonR., GradyM. M., and RotheryD. London: The Geological Society. pp. 7591.
  • Keil R. G. and Kirchman D. L. 1991. Dissolved combined aminoacids in marine waters as determined by a vapor-phase hydrolysis method. Marine Chemistry 33: 243259.
  • Kminek G., Botta O., Glavin D. P., and Bada J. L. 2002. Amino acids in the Tagish Lake meteorite. Meteoritics & Planetary Science 37: 697701.
  • Kotra R. K., Shimoyama A., Ponnamperuma C., and Hare P. E. 1979. Amino acids in a carbonaceous chondrite from Antarctica. Journal of Molecular Evolution 13: 179183.
  • Krutchinsky A. N., Chernushevich I. V., Spicer V. L., Ens W., and Standing K. G. 1998. Collisional damping interface for an electrospray ionization time-of-flight mass spectrometer. Journal of the American Society for Mass Spectrometry 9: 569579.
  • Kutlán D., Presits P., and Molnár-Perl, I. 2002. Behavior and characteristics of amine derivatives obtained with o-phthaldialdehyde/3-mercaptopropionic acid and with o-pthaldialdehyde/N-acetyl-L-cysteine reagents. Journal of Chromatography A 949: 235248.
  • Kvenvolden K. A., Lawless J., Pering K., Peterson E., Flores J., Ponnamperuma C., Kaplan I., and Moore C. 1970. Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature 228: 923926.
  • Kvenvolden K. A., Lawless J. G., Ponnomperuma C. 1971. Nonprotein amino acids in the Murchison meteorite. Proceedings of the National Academy of Sciences 68: 486490.
  • Lerner N. R., Peterson E., and Chang S. 1993. The Strecker synthesis as a source of amino-acids in carbonaceous chondrites deuterium retention during synthesis. Geochimica et Cosmochimica Acta 57: 47134723.
  • Lindroth P. and Mopper K. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-pthaldialdehyde. Analytical Chemistry 51: 16671674.
  • Love S. G. and Brownlee D. E. 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262: 550553.
  • Matrajt G., Pizzarello S., Taylor S., and Brownlee D. E. 2004. Concentration and variability of the AIB amino acid in polar micrometeorites: Implications for the exogenous delivery of amino acids to the primitive Earth. Meteoritics & Planetary Science 39: 18491858.
  • Mengerink Y., Kutlán D., Tóth F., Csámpai A., and Molnár-Perl I. 2002. Advances in the evaluation of the stability and characteristics of the amino acid and amine derivatives obtained with the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-L-cysteine reagents: Highperformance liquid chromatography-mass spectrometry study. Journal of Chromatography A 949: 99124.
  • Miller S. L. 1957. The mechanism of synthesis of amino acids by electric discharges. Biochimica et Biophysica Acta 23: 480489.
  • Oró J. 1961. Comets and the formation of biochemical compounds on the primitive Earth. Nature 190: 389390.
  • Peltzer E. T., Bada J. L., Schlesinger G., and Miller S. L. 1984. The chemical conditions on the parent body of the Murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Advances in Space Research 4: 6974.
  • Pereira W. E., Summons R. E., Rindfleisch T. C., Duffield A. M., Zeitman B., and Lawless J. G. 1975. Stable isotope mass fragmentography—Identification and hydrogen-deuterium exchange studies of eight Murchison meteorite amino acids. Geochimica et Cosmochimica Acta 39: 163172.
  • Pizzarello S. and Cronin J. R. 2000. Non-racemic amino acids in the Murray and Murchison meteorites. Geochimica et Cosmochimica Acta 64: 329338.
  • Pizzarello S., Feng X., Epstein S., and Cronin J. R. 1994. Isotopic analyses of nitrogenous compounds from the Murchison meteorite: Ammonia, amines, amino acids, and polar hydrocarbons. Geochimica et Cosmochimica Acta 58: 55795587.
  • Pizzarello S., Zolensky M., and Turk K. A. 2003. Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association. Geochimica et Cosmochimica Acta 67: 15891595.
  • Roach M. C. and Harmony M. D. 1987. Determination of amino acids at subfemtomole levels by high-performance liquid chromatography with laser-induced fluorescence detection. Analytical Chemistry 59: 411415.
  • Sephton M. 2002. Organic compounds in meteorites. Natural Product Reports 19: 292311.
  • Shimoyama A. and Harada K. 1984. Amino acid depleted carbonaceous chondrites (C2) from Antarctica. Geochemical Journal 18: 281286.
  • Shimoyama A. and Ogasawara R. 2002. Dipeptides and diketopiperazines in the Yamato-791198 and Murchison carbonaceous chondrites. Origins of Life and Evolution of the Biosphere 32: 165179.
  • Shimoyama A., Ponnamperuma C., and Yanai K. 1979. Amino acids in the Yamato carbonaceous chondrite from Antarctica. Nature 282: 394396.
  • Shimoyama A., Harada K., and Yanai K. 1985. Amino-acids from the Yamato-791198 carbonaceous chondrite from Antarctica. Chemistry Letters 8: 11831186.
  • Tsugita A., Uchida T., Mewes H. W., and Ataka T. 1987. A rapid vapor-phase acid (hydrochloric-acid and trifluoroacetic-acid) hydrolysis of peptide and protein. Journal of Biochemistry 102: 15931597.
  • Verentchikov A. N., Ens W., and Standing K. G. 1994. Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction. Analytical Chemistry 66: 126133.
  • Van Eijk H. M. H., Rooyakkers D. R., Soeters P. B., and Deutz N. E. P. 1999. Determination of amino acid isotope enrichment using liquid chromatography-mass spectrometry. Analytical Chemistry 271: 817.
  • Whitehouse C. M., Dreyer R. N., Yamashita M., and Fenn J. B. 1985. Electrospray interface for liquid chromatographs and mass spectrometers. Analytical Chemistry 57: 675679.
  • Zhao M. and Bada J. L. 1995. Determination of -dialkyl amino acids and their enantiomers in geological samples by HPLC after derivatization with a chiral adduct of o-phthaldialdehyde. Journal of Chromatography A 690: 5563.
  • Zolensky M. E. and Browning L. B. 1994. CM chondrites exhibit the complete petrologic range from type 2 to 1. Meteoritics 29: 556.
  • Zolensky M. E. and McSween H. Y., Jr. 1988. In Meteorites and the early solar system, edited by KerridgeJ. F. and MatthewsM. S. Tucson, Arizona: The University of Arizona Press pp. 114143.