SEARCH

SEARCH BY CITATION

REFERENCES

  • Agee C. B. and Draper D. S. 2004. Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle. Earth and Planetary Science Letters 224: 415429.
  • Agee C. B. and Draper D. S. 2005. High-pressure melting of H chondrite: A match for the Martian basalt source mantle (abstract #1434). 36th Lunar and Planetary Science Conference. CD-ROM.
  • Barrat J.-A., Jambon A., Bohn M., Gillet Ph., Sautter V., Gopel C., Lesourd M., and Keller F. 2002. Petrology and chemistry of the picritic shergottite Northwest Africa 1068 (NWA 1068). Geochimica et Cosmochimica Acta 66: 35053518.
  • Beattie P., Clifford F., and Russell D. 1991. Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contributions to Mineralogy and Petrology 109: 212224.
  • Bertka C. M. and Fei Y. 1997. Mineralogy of the Martian interior up to core-mantle boundary pressures. Journal of Geophysical Research 102: 52515264.
  • Bertka C. M. and Holloway J. R. 1994. Anhydrous partial melting of an iron-rich mantle I: Subsolidus phase assemblages and partial melting phase relationships at 10 to 30 kbar. Contributions to Mineralogy and Petrology 115: 313322.
  • Borg L. E. and Draper D. S. 2003. A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteoritics & Planetary Science 38: 17131731.
  • Borg L. E., Nyquist L. E., Taylor L. A., Wiesmann H., and Shih C.-Y. 1997. Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochimica et Cosmochimica Acta 61: 49154931.
  • Borg L. E., Nyquist L. E., Wiesmann H., Shih C.-Y., and Reese Y. 2003. The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotope systematics. Geochimica et Cosmochimica Acta 67: 35193536.
  • Boyd F. R. and England J. C. 1963. Effect of pressure on the melting of diopside, CaMgSi2O6 and albite, NaAlSi3O8 in the range up to 50 kb. Journal of Geophysical Research 68: 311323.
  • Corgne A. and Wood B. J. 2002. CaSiO3 and CaTiO3 perovskite-melt partitioning of trace elements: Implications for gross mantle differentiation. Geophysical Research Letters, doi:10.1029/2001GL014398.
  • Dann J. C., Holzheid A. H., Grove T. L., and McSween H. Y., Jr. 2001. Phase equilibria of the Shergotty meteorite: Constraints on pre-eruptive H2O contents of Martian magmas and fractional crystallization under hydrous conditions. Meteoritics & Planetary Science 36: 793806.
  • Draper D. S., Borg L. E., and Agee C. B. 2005. Crystallization of a Martian magma ocean and the formation of shergottite source regions (abstract #1492). 36th Lunar Planetary Science Conference. CD-ROM.
  • Dreibus G. and Wänke H. 1987. Volatiles on Earth and Mars: A comparison. Icarus 71: 225240.
  • Dreibus G., Haubold R., Huisl W., and Spettel B. 2003. Comparison of the chemistry of Yamato-980459 with DaG 476 and SaU 005 (abstract). International Symposium, Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites. pp. 1920.
  • Dunn T. 1993. The piston-cylinder apparatus. In Experiments at high pressure and applications to the Earth's mantle, edited by Luth R. W. Québec, Ontario: Mineralogical Association of Canada. pp. 3994.
  • Elkins-Tanton L. T., Zaranek S. E., Parmentier E. M., and Hess P. C. 2005a. Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth and Planetary Science Letters 236: 112.
  • Elkins-Tanton L. T., Hess P. C., and Parmentier E. M. 2005b. Possible formation of ancient crust on Mars through magma ocean processes. Journal of Geophysical Research, doi:10.1029/2005JE002480.
  • Elkins-Tanton L. T., Parmentier E. M., and Hess P. C. 2003. Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteoritics & Planetary Science 38: 17531771.
  • Ghiorso M. S. and Sack R. O. 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119: 197212.
  • Goodrich C. A. 2003. Petrogenesis of olivine-phyric shergottites Sayh al Uhaymir 005 and Elephant Moraine 79001 lithology A. Geochimica et Cosmochimica Acta 67: 37353771.
  • Goodrich C. A., Herd C. D. K., and Taylor L. A. 2003. Spinels and oxygen fugacity in olivine-phyric and lherzolitic shergottites. Meteoritics & Planetary Science 38: 17731792.
  • Greshake A., Fritz J., and Stöffler D. 2004. Petrology and metamorphism of the olivine-phyric shergottite Yamato-980459: Evidence for a two-stage cooling and single-stage ejection history. Geochimica et Cosmochimica Acta 68: 23592377.
  • Herd C. D. K. 2003. The oxygen fugacity of olivine-phyric Martian basalts and the components within the mantle and crust of Mars. Meteoritics & Planetary Science 38: 17931805.
  • Herd C. D. K. Forthcoming. Insights into the redox history of the NWA 1068/1110 Martian basalt from mineral equilibria and vanadium oxybarometry. Meteoritics & Planetary Science..
  • Herd C. D. K., Papike J. J., and Brearley A. J. 2001. Oxygen fugacity of Martian basalts from electron microprobe oxygen and TEMEELS analyses of Fe-Ti oxides. American Mineralogist 86: 10151024.
  • Holloway J. R., Pan V., and Gudmundsson G. 1992. High-pressure fluid absent melting experiments in the presence of graphite: Oxygen fugacity, ferric/ferrous ratio and dissolved CO2. European Journal of Mineralogy 4: 105114.
  • Jones J. H. 1995. Experimental trace element partitioning. In Rock physics and phase relations: A handbook of physical constants, edited by Ahrens T. J. Washington, D.C.: American Geophysical Union. pp. 73104.
  • Jones J. H. 2003. Constraints on the structure of the Martian interior from the chemical and isotopic systematics of the SNC meteorites. Meteoritics & Planetary Science 38: 18071814.
  • Jones J. H. 2004. The edge of wetness: The case for dry magmatism on Mars (abstract # 1798). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Kellogg L. H. and King S. D. 1997. The effect of temperature dependent viscosity on the structure of new plumes in the mantle: Results of a finite element model in a spherical, axysymmetric shell. Earth and Planetary Science Letters 148: 1326.
  • Kellogg L. H. and King S. D. 1993. Effect of mantle plumes on the growth of the D double-prime region by reaction between the core and mantle. Geophysical Research Letters 20: 379382.
  • Kilinc A., Carmichael I. S. E., Rivers M. L., and Sack R. O. 1983. The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contributions to Mineralogy and Petrology 83: 136140.
  • Kiefer W. S. 2003. Melting in the Martian mantle: Shergottite formation and implications for present-day mantle convection on Mars. Meteoritics & Planetary Science 38: 18151832.
  • Koizumi E., Mikouchi T., Monkawa A., and Miyamoto M. 2003. The origin of olivine megacryst in the Dar al Gani 476 basaltic shergottite and its paired meteorites: Verification of three models (abstract). International Symposium, Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites. pp. 5657.
  • Kress V. C. and Carmichael I. S. E. 1988. Stoichiometry of the iron oxidation reaction in silicate melts. American Mineralogist 73: 12671274.
  • Lei J. and Zhao D. 2006. A new insight into the Hawai'ian plume. Earth and Planetary Science Letters 241: 438453.
  • Leshin L. A., Epstein S., and Stolper E. M. 1996. Hydrogen isotope geochemistry of SNC meteorites. Geochimica et Cosmochimica Acta 60: 26352650.
  • Longhi J. 1991. Complex magmatic processes on Mars: Inferences from the SNC meteorites. Proceedings, 21st Lunar and Planetary Science Conference. pp. 695709.
  • Longhi J., Knittle E., Holloway J. R., and Wänke H. 1992. The bulk composition, mineralogy and internal structure of Mars. In Mars, edited by Kiefer H. H., Jakosky B. M., Snyder C. W., and Matthews M. S. Tucson, Arizona: The University of Arizona Press. pp. 184208.
  • McCanta M., Rutherford M. J., and Jones J. H. 2004. An experimental study of rare earth element partitioning between a shergottite melt and pigeonite: Implications for the oxygen fugacity of the Martian interior. Geochimica et Cosmochimica Acta 68: 19431952.
  • McDade P., Wood B. J., Van Westrenen W., Brooker R., Gudmundsson G., Soulard H., Najoka J., and Blundy J. 2002. Pressure corrections for a selection of piston cylinder cell assemblies. Mineralogical Magazine 66: 10211028.
  • McGovern P. J., Solomon S. C., Smith D. E., Zuber M. T., Simons M., Wieczorek M. A., Phillips R. T., Neuman G. A., Aharonson O., and Head J. W. 2002. Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution, Journal of Geophysical Research, doi:10.1029/2002JE001854.
  • McGovern P. J., Solomon S. C., Smith D. E., Zuber M. T., Simons M., Wieczorek M. A., Phillips R. T., Neuman, G. A., Aharonson O., and Head J. W. 2004. A correction to “Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution.” Journal of Geophysical Research, doi: 10.1029/2004JE002286.
  • McKay G., Le L., Schwandt C., Mikouchi T., Koizumi E., and Jones J. 2004. Yamato-980459: The most primitive shergottite (abstract #2154)? 35th Lunar and Planetary Science Conference. CD-ROM.
  • Mei S. and Kohlstedt D. L. 2000. Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. Journal of Geophysical Research 105: 21,45721,469.
  • Mikouchi T., Koizumi E., McKay G., Monkawa A., Ueda Y., and Miyamoto M. 2003. Mineralogy and petrology of the Yamato-980459 Martian meteorite: A new shergottite-related rock (abstract). International Symposium, Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites. pp. 8283.
  • Misawa K. 2003. The Yamato-980459 shergottite consortium (abstract). International Symposium, Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites. pp. 8485.
  • Monders A. G., Medard E., and Grove T. L. 2006. Basaltic lavas at Gusev crater revisited (abstract #1834). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Navrotsky A. 1995. Thermodynamic properties of minerals. In Mineral physics and crystallography: A handbook of physical constants, edited by Ahrens T. J. Washington, D.C.: American Geophysical Union. pp. 1828.
  • Neuman G. A., Zuber M. T., Wieczorek M. A., McGovern P. J., Lemoine F. G., and Smith D. E. 2004. Crustal structure of Mars from gravity and topography. Journal of Geophysical Research, doi:10.1029/2004JE002262.
  • Norris J. R. and Herd C. D. K. 2006. The Yamato-980459 liquidus at 10 to 20 kilobars (abstract #1787). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Redmond H. L. and King S. D. 2004. A numerical study of a mantle plume beneath the Tharsis rise: Reconciling dynamic uplift and lithospheric support models. Journal of Geophysical Research, doi:10.1029/2003JE002228.
  • Ribe N. M. and Christensen U. R. 1999. The dynamical origin of Hawai'ian volcanism. Earth and Planetary Science Letters 171: 517531.
  • Shaw D. M. 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 68: 23592377.
  • Shih C.-Y., Nyquist L. E., Wiesmann H., Reese Y., and Misawa K. 2005. Rb-Sr and Sm-Nd dating of olivine-phyric shergottite Yamato-980459: Petrogenesis of depleted shergottites. Antarctic Meteorite Research 18: 4665.
  • Shirai N. and Ebihara M. 2004. Chemical characteristics of an olivine-phyric shergottites, Yamato-980459 (abstract #1511). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Taura H., Yurimoto H., Kato T., and Sueno S. 2001. Trace element partitioning between silicate perovskites and ultracalcic melts. Physics of the Earth and Planetary Interiors 124: 2532.
  • Treiman A. H. 2003. Chemical compositions of Martian basalts (shergottites): Some inferences on basalt formation, mantle metasomatism, and differentiation in Mars. Meteoritics & Planetary Science 38: 18491864.
  • Toplis M. J. 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: Criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology 149: 2239.
  • Van Hunen J. and Zhong S. 2003. New insight in the Hawaiian plume swell dynamics from scaling laws. Geophysical Research Letters, doi:10.1029/2003GL017646.
  • Wadhwa M. 2001. Redox state of Mars' upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291: 15271530.
  • Wänke H. and Dreibus G. 1994. Chemistry and accretion history of Mars. Philosophical Transactions of the Royal Society of London A 348: 285293.
  • Watson E. B., Wark D. A., Price J. D., and Van Orman J. A. 2002. Mapping the thermal structure of solid-media pressure assemblies. Contributions to Mineralogy and Petrology, doi:10.1007/s00410–001-0327–4.
  • Watson S. and McKenzie D. 1991. Melt generation by plumes: A study of Hawaiian volcanism. Journal of Petrology 32: 501537.
  • Wieczorek M. A. and Zuber M. T. 2004. Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. Journal of Geophysical Research, doi:10.1029/2003JE002153.
  • Williams D. W. and Kennedy J. C. 1969. Melting curve of diopside to 50 kilobars. Journal of Geophysical Research 74: 43594366.
  • Williams J.-P. and Nimmo F. 2004. Thermal evolution of the Martian core: Implications for an early dynamo. Geology 32: 97100.
  • Wyllie P. J. 1979. Magmas and volatile components. American Mineralogist 64: 469500.
  • Zuber M. T., Solomon S. C., Phillips R. T., Smith D. E., Tyler G. L., Aharonson O., Balmino G., Banerdt W. B., Head J. W., Johnson C. L., Lemoine F. G., McGovern P. J., Neuman G. A., Rowlands D. D., and Zhong S. 2000. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287: 17881793.